Extractive Summarization with Very Deep Pretrained Language Model

Yang Gu, Yanke Hu
{"title":"Extractive Summarization with Very Deep Pretrained Language Model","authors":"Yang Gu, Yanke Hu","doi":"10.5121/IJAIA.2019.10203","DOIUrl":null,"url":null,"abstract":"Recent development of generative pretrained language models has been proven very successful on a wide range of NLP tasks, such as text classification, question answering, textual entailment and so on.In this work, we present a two-phase encoder decoder architecture based on Bidirectional Encoding Representation from Transformers(BERT) for extractive summarization task. We evaluated our model by both automatic metrics and human annotators, and demonstrated that the architecture achieves the stateof-the-art comparable result on large scale corpus - CNN/Daily Mail . As the best of our knowledge, this is the first work that applies BERT based architecture to a text summarization task and achieved the state-of-the-art comparable result.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10203","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2019.10203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recent development of generative pretrained language models has been proven very successful on a wide range of NLP tasks, such as text classification, question answering, textual entailment and so on.In this work, we present a two-phase encoder decoder architecture based on Bidirectional Encoding Representation from Transformers(BERT) for extractive summarization task. We evaluated our model by both automatic metrics and human annotators, and demonstrated that the architecture achieves the stateof-the-art comparable result on large scale corpus - CNN/Daily Mail . As the best of our knowledge, this is the first work that applies BERT based architecture to a text summarization task and achieved the state-of-the-art comparable result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超深度预训练语言模型的提取式摘要
近年来,生成式预训练语言模型在文本分类、问答、文本蕴涵等NLP任务中取得了巨大的成功。在这项工作中,我们提出了一种基于变形器双向编码表示(BERT)的两相编码器解码器架构,用于提取摘要任务。我们通过自动指标和人工注释器来评估我们的模型,并证明该架构在大规模语料库(CNN/Daily Mail)上达到了最先进的可比结果。据我们所知,这是第一个将基于BERT的体系结构应用于文本摘要任务并获得最先进的可比结果的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1