Correction Of Self-Absorption Effect In Laser-Induced Breakdown Spectroscopy Analysis For Sea Salt Aerosols Using A Duplicating Mirror

IF 3.4 2区 化学 Q1 SPECTROSCOPY Atomic Spectroscopy Pub Date : 2022-09-28 DOI:10.46770/as.2022.136
Lianbo Guo
{"title":"Correction Of Self-Absorption Effect In Laser-Induced Breakdown Spectroscopy Analysis For Sea Salt Aerosols Using A Duplicating Mirror","authors":"Lianbo Guo","doi":"10.46770/as.2022.136","DOIUrl":null,"url":null,"abstract":": Sea salt aerosols significantly impact marine ecosystems and climate change; however, self-absorption effects unavoidably occur in the detection of sea salt aerosols via laser-induced breakdown spectroscopy (LIBS). This work illustrates the application of a renowned replica plasma method for self-absorption correction in the detection of sea salt aerosols via LIBS. Two sets of spectral data were obtained by adding a duplicating mirror behind the plasma, and the self-absorption correction factor was calculated using a previously described method. Consequently, the experimental results show a marked improvement in the linearity of the calibration curve. The determination coefficients of linear fitting were above 0.99, and the root mean square error of the cross-validation RMSECV was negligible. The duplicating mirror method for self-absorption correction in the detection of sea salt aerosols via LIBS can thus achieve high accuracy and stability within a certain range and therefore can prove useful for sea salt aerosol, aerosol, and gas detection.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2022.136","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

: Sea salt aerosols significantly impact marine ecosystems and climate change; however, self-absorption effects unavoidably occur in the detection of sea salt aerosols via laser-induced breakdown spectroscopy (LIBS). This work illustrates the application of a renowned replica plasma method for self-absorption correction in the detection of sea salt aerosols via LIBS. Two sets of spectral data were obtained by adding a duplicating mirror behind the plasma, and the self-absorption correction factor was calculated using a previously described method. Consequently, the experimental results show a marked improvement in the linearity of the calibration curve. The determination coefficients of linear fitting were above 0.99, and the root mean square error of the cross-validation RMSECV was negligible. The duplicating mirror method for self-absorption correction in the detection of sea salt aerosols via LIBS can thus achieve high accuracy and stability within a certain range and therefore can prove useful for sea salt aerosol, aerosol, and gas detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用复制镜校正海盐气溶胶激光诱导击穿光谱分析中的自吸收效应
:海盐气溶胶对海洋生态系统和气候变化产生重大影响;然而,在利用激光诱导击穿光谱(LIBS)检测海盐气溶胶时,不可避免地会出现自吸收效应。这项工作说明了一种著名的自吸收校正复制等离子体方法在通过LIBS检测海盐气溶胶中的应用。通过在等离子体后面添加复制镜获得两组光谱数据,并使用先前描述的方法计算自吸收校正因子。因此,实验结果表明,校准曲线的线性度显著提高。线性拟合的确定系数在0.99以上,交叉验证RMSECV的均方根误差可忽略不计。因此,在通过LIBS检测海盐气溶胶的过程中,用于自吸收校正的复制镜方法可以在一定范围内实现高精度和稳定性,因此可以用于海盐气溶胶、气溶胶和气体检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atomic Spectroscopy
Atomic Spectroscopy 物理-光谱学
CiteScore
5.30
自引率
14.70%
发文量
42
审稿时长
4.5 months
期刊介绍: The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.
期刊最新文献
Determination of REEs in Seawater RMs (NASS-7, CASS-6, and NMIJ 7204-A) Using Online Automated Separation ICP-MS Analysis System A Glimpse Into The Nature Of Particles Created During Pulsed Laser Ablation Of Arsenic Compounds In Ambient Gases Determination Of Sb Isotope Ratios In Stibnite Using Fs-LA-MC-ICP-MS And Two Potential Reference Materials Study Atom Probe Tomography Reveals Nano-Scale Organic Remaining In Conodont A Spectral Optimization Method To Enhance Handheld LIBS For T91 Aging Grade Classification Using Lorentzian Profile And Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1