A Survey of Post-Quantum Cryptography: Start of a New Race

IF 1.8 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Cryptography Pub Date : 2023-08-14 DOI:10.3390/cryptography7030040
Duc-Thuan Dam, Thai-Ha Tran, Van‐Phuc Hoang, C. Pham, Trong-Thuc Hoang
{"title":"A Survey of Post-Quantum Cryptography: Start of a New Race","authors":"Duc-Thuan Dam, Thai-Ha Tran, Van‐Phuc Hoang, C. Pham, Trong-Thuc Hoang","doi":"10.3390/cryptography7030040","DOIUrl":null,"url":null,"abstract":"Information security is a fundamental and urgent issue in the digital transformation era. Cryptographic techniques and digital signatures have been applied to protect and authenticate relevant information. However, with the advent of quantum computers and quantum algorithms, classical cryptographic techniques have been in danger of collapsing because quantum computers can solve complex problems in polynomial time. Stemming from that risk, researchers worldwide have stepped up research on post-quantum algorithms to resist attack by quantum computers. In this review paper, we survey studies in recent years on post-quantum cryptography (PQC) and provide statistics on the number and content of publications, including a literature overview, detailed explanations of the most common methods so far, current implementation status, implementation comparisons, and discussion on future work. These studies focused on essential public cryptography techniques and digital signature schemes, and the US National Institute of Standards and Technology (NIST) launched a competition to select the best candidate for the expected standard. Recent studies have practically implemented the public key encryption/key encapsulation mechanism (PKE/KEM) and digital signature schemes on different hardware platforms and applied various optimization measures based on other criteria. Along with the increasing number of scientific publications, the recent trend of PQC research is increasingly evident and is the general trend in the cryptography industry. The movement opens up a promising avenue for researchers in public key cryptography and digital signatures, especially on algorithms selected by NIST.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7030040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Information security is a fundamental and urgent issue in the digital transformation era. Cryptographic techniques and digital signatures have been applied to protect and authenticate relevant information. However, with the advent of quantum computers and quantum algorithms, classical cryptographic techniques have been in danger of collapsing because quantum computers can solve complex problems in polynomial time. Stemming from that risk, researchers worldwide have stepped up research on post-quantum algorithms to resist attack by quantum computers. In this review paper, we survey studies in recent years on post-quantum cryptography (PQC) and provide statistics on the number and content of publications, including a literature overview, detailed explanations of the most common methods so far, current implementation status, implementation comparisons, and discussion on future work. These studies focused on essential public cryptography techniques and digital signature schemes, and the US National Institute of Standards and Technology (NIST) launched a competition to select the best candidate for the expected standard. Recent studies have practically implemented the public key encryption/key encapsulation mechanism (PKE/KEM) and digital signature schemes on different hardware platforms and applied various optimization measures based on other criteria. Along with the increasing number of scientific publications, the recent trend of PQC research is increasingly evident and is the general trend in the cryptography industry. The movement opens up a promising avenue for researchers in public key cryptography and digital signatures, especially on algorithms selected by NIST.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
后量子密码学综述:一场新竞赛的开始
信息安全是数字化转型时代的一个基础性、紧迫性问题。加密技术和数字签名已被应用于保护和验证相关信息。然而,随着量子计算机和量子算法的出现,经典密码技术已经面临崩溃的危险,因为量子计算机可以在多项式时间内解决复杂问题。由于存在这种风险,世界各地的研究人员加强了对后量子算法的研究,以抵御量子计算机的攻击。在这篇综述文章中,我们调查了近年来关于后量子密码学(PQC)的研究,并统计了出版物的数量和内容,包括文献综述、迄今为止最常见方法的详细解释、当前实现状态、实现比较以及对未来工作的讨论。这些研究集中在基本的公共密码技术和数字签名方案上,美国国家标准与技术研究所(NIST)发起了一场竞赛,以选出预期标准的最佳候选者。最近的研究已经在不同的硬件平台上实际实现了公钥加密/密钥封装机制(PKE/KEM)和数字签名方案,并应用了基于其他标准的各种优化措施。随着科学出版物的不断增加,近年来PQC研究的趋势越来越明显,是密码学行业的大势所趋。这场运动为公钥密码学和数字签名的研究人员,特别是NIST选择的算法,开辟了一条充满希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cryptography
Cryptography Mathematics-Applied Mathematics
CiteScore
3.80
自引率
6.20%
发文量
53
审稿时长
11 weeks
期刊最新文献
Natural Language Processing for Hardware Security: Case of Hardware Trojan Detection in FPGAs Entropy Analysis of FPGA Interconnect and Switch Matrices for Physical Unclonable Functions Lattice-Based Post-Quantum Public Key Encryption Scheme Using ElGamal’s Principles Improve Parallel Resistance of Hashcash Tree Public Key Protocols from Twisted-Skew Group Rings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1