A. Aribowo, M. I. Adhynugraha, Fadli Cahya Megawanto, Arif Hidayat, T. Muttaqie, F. A. Wandono, Abian Nurrohmad, Chairunnisa, Sherly Octavia Saraswati, Ilham Bagus Wiranto, Iqbal Reza Al Fikri, M. Saputra
{"title":"Finite element method on topology optimization applied to laminate composite of fuselage structure","authors":"A. Aribowo, M. I. Adhynugraha, Fadli Cahya Megawanto, Arif Hidayat, T. Muttaqie, F. A. Wandono, Abian Nurrohmad, Chairunnisa, Sherly Octavia Saraswati, Ilham Bagus Wiranto, Iqbal Reza Al Fikri, M. Saputra","doi":"10.1515/cls-2022-0191","DOIUrl":null,"url":null,"abstract":"Abstract This research applies a numerical study of topology optimization of laminate composite structures by using a finite element method (FEM). In this methodology, the plies orientation is excluded from the optimization. The geometry-based optimization from frames of a MALE UAV fuselage structure is presented. The minimum strain energy with an optimization constraint of 20% of weight reduction is used in the objective function. Before the primary analysis, benchmark studies of topology optimization without considering orientations from previously published literature are performed. The convergence studies were taken to acquire the appropriate mesh size in the FEM technique, which utilized a four-noded shell element. The finite element analysis and optimization results showed that the structural design of the newly framed composite fuselage MALE UAV meets the structural strength requirements specified in the airworthiness standard STANAG 4671.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This research applies a numerical study of topology optimization of laminate composite structures by using a finite element method (FEM). In this methodology, the plies orientation is excluded from the optimization. The geometry-based optimization from frames of a MALE UAV fuselage structure is presented. The minimum strain energy with an optimization constraint of 20% of weight reduction is used in the objective function. Before the primary analysis, benchmark studies of topology optimization without considering orientations from previously published literature are performed. The convergence studies were taken to acquire the appropriate mesh size in the FEM technique, which utilized a four-noded shell element. The finite element analysis and optimization results showed that the structural design of the newly framed composite fuselage MALE UAV meets the structural strength requirements specified in the airworthiness standard STANAG 4671.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.