C. Tran, Chatpet Yossapol, N. Tantemsapya, P. Kosa, Phatsakrit Kongkhiaw
{"title":"Water Quality Simulation and Dissolved Oxygen Change Scenarios in Lam Takhong River in Thailand","authors":"C. Tran, Chatpet Yossapol, N. Tantemsapya, P. Kosa, Phatsakrit Kongkhiaw","doi":"10.13044/J.SDEWES.D9.0389","DOIUrl":null,"url":null,"abstract":"Dissolved oxygen (DO) in Lam Takhong River gradually reaches zero value during the dry season on several occasions in the past decade causing the unsuitable quality for use as the raw water for Nakhon Ratchasima Town. Discharges of point sources and diffuse sources containing pollutants with organics and nutrients are the major cause of water quality deterioration in the river. To find the sources of impact on the water quality in the river, a one- dimensional steady-flow systems river water quality model, QUAL2Kw, was constructed and simulated. The model was calibrated and validated using the water quality data from 2008 to 2017 for the Lam Takhong River by seven monitoring stations. The modelling was applied to simulate various water quality parameters during the critical period to compare to the designated surface water quality criteria third class in Thailand (minimum dissolved oxygen at or above 4 mg/L; maximum biochemical oxygen demand (BOD), nitrate-nitrogen, and ammonia-nitrogen at or below 2.0, 5.0 and 0.5 mg/L, respectively). The study reach of the river flows 122 km from Lam Takhong Dam to the Mun River at Chaloem Phra Kiat district through the urban central area. Several segments of the river have been alarmed for many constituents with the dissolved oxygen impairment is the focus of the study. The scenarios of loads and upstream dissolved oxygen modification were conducted to assess the change of dissolved oxygen concentration. The result of the QUAL2Kw model showed that the decomposition of organic matter and a poor reaeration were the primary cause of the impairment. The local oxygenation causes fluctuations in dissolved oxygen levels along the river and the dissolved oxygen concentration decreases downstream of the river with some values fell the meet the fourth class of surface water quality criteria in Thailand (DO above 2 mg/L and BOD 5 <4 mg/L). The QUAL2Kw model is suitable for simulating the current and future river water quality and help water resources managers to issue the appropriate policy options for the Lam Takhong River.","PeriodicalId":46202,"journal":{"name":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13044/J.SDEWES.D9.0389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Dissolved oxygen (DO) in Lam Takhong River gradually reaches zero value during the dry season on several occasions in the past decade causing the unsuitable quality for use as the raw water for Nakhon Ratchasima Town. Discharges of point sources and diffuse sources containing pollutants with organics and nutrients are the major cause of water quality deterioration in the river. To find the sources of impact on the water quality in the river, a one- dimensional steady-flow systems river water quality model, QUAL2Kw, was constructed and simulated. The model was calibrated and validated using the water quality data from 2008 to 2017 for the Lam Takhong River by seven monitoring stations. The modelling was applied to simulate various water quality parameters during the critical period to compare to the designated surface water quality criteria third class in Thailand (minimum dissolved oxygen at or above 4 mg/L; maximum biochemical oxygen demand (BOD), nitrate-nitrogen, and ammonia-nitrogen at or below 2.0, 5.0 and 0.5 mg/L, respectively). The study reach of the river flows 122 km from Lam Takhong Dam to the Mun River at Chaloem Phra Kiat district through the urban central area. Several segments of the river have been alarmed for many constituents with the dissolved oxygen impairment is the focus of the study. The scenarios of loads and upstream dissolved oxygen modification were conducted to assess the change of dissolved oxygen concentration. The result of the QUAL2Kw model showed that the decomposition of organic matter and a poor reaeration were the primary cause of the impairment. The local oxygenation causes fluctuations in dissolved oxygen levels along the river and the dissolved oxygen concentration decreases downstream of the river with some values fell the meet the fourth class of surface water quality criteria in Thailand (DO above 2 mg/L and BOD 5 <4 mg/L). The QUAL2Kw model is suitable for simulating the current and future river water quality and help water resources managers to issue the appropriate policy options for the Lam Takhong River.
期刊介绍:
The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations.