{"title":"Gene Expression Changes by Diallyl Trisulfide Administration in Chemically-induced Mammary Tumors in Rats","authors":"Eun-Ryeong Hahm, Shivendra V. Singh","doi":"10.15430/JCP.2022.27.1.22","DOIUrl":null,"url":null,"abstract":"Diallyl trisulfide (DATS) was shown to be a potent inhibitor of luminal-type MCF-7 xenograft growth in vivo. The present study was conducted to determine the preventive effect of DATS administration using an N-methyl-N-nitrosourea (MNU)-induced rat mammary tumor model, which shares molecular resemblance to luminal-type human breast cancers. The DATS administration (50 mg/kg body weight, 5 times/week) was safe, but did not reduce mammary tumor latency, incidence, burden or multiplicity. Therefore, we conducted RNA-seq analysis using mammary tumors from control and DATS-treated rats (n = 3 for each group) to gain insights into lack of mammary tumor prevention by this phytochemical. The gene ontology and the Kyoto encyclopedia of genes and genomes pathway analyses of the RNA-seq data revealed upregulation of genes associated with ribosomes, translation, peptide biosynthetic/metabolic process, and oxidative phosphorylation but downregulation of genes associated with mitogen-activated protein kinases. A total of 33 genes associated with ribosomes were significantly upregulated by DATS treatment, including RPL11 and RPS14. Western blotting confirmed upregulation of RPL11 and neurofascin protein expression in mammary tumors from DATS-treated rats when compared to controls. A statistically significant increase in protein level of c-Jun N-terminal kinase 2 was also observed in tumors from DATS-treated rats when compared to controls. On the other hand, expression of complex I subunits NDUFV1 or NDUFS1 was not affected by DATS treatment. These results offer potential explanations for ineffectiveness of DATS in the chemically-induced rat mammary tumor model. Inhibitors of the proteins upregulated by DATS may be needed to improve chemopreventive efficacy of this phytochemical.","PeriodicalId":15120,"journal":{"name":"Journal of Cancer Prevention","volume":"27 1","pages":"22 - 30"},"PeriodicalIF":2.5000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Prevention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15430/JCP.2022.27.1.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diallyl trisulfide (DATS) was shown to be a potent inhibitor of luminal-type MCF-7 xenograft growth in vivo. The present study was conducted to determine the preventive effect of DATS administration using an N-methyl-N-nitrosourea (MNU)-induced rat mammary tumor model, which shares molecular resemblance to luminal-type human breast cancers. The DATS administration (50 mg/kg body weight, 5 times/week) was safe, but did not reduce mammary tumor latency, incidence, burden or multiplicity. Therefore, we conducted RNA-seq analysis using mammary tumors from control and DATS-treated rats (n = 3 for each group) to gain insights into lack of mammary tumor prevention by this phytochemical. The gene ontology and the Kyoto encyclopedia of genes and genomes pathway analyses of the RNA-seq data revealed upregulation of genes associated with ribosomes, translation, peptide biosynthetic/metabolic process, and oxidative phosphorylation but downregulation of genes associated with mitogen-activated protein kinases. A total of 33 genes associated with ribosomes were significantly upregulated by DATS treatment, including RPL11 and RPS14. Western blotting confirmed upregulation of RPL11 and neurofascin protein expression in mammary tumors from DATS-treated rats when compared to controls. A statistically significant increase in protein level of c-Jun N-terminal kinase 2 was also observed in tumors from DATS-treated rats when compared to controls. On the other hand, expression of complex I subunits NDUFV1 or NDUFS1 was not affected by DATS treatment. These results offer potential explanations for ineffectiveness of DATS in the chemically-induced rat mammary tumor model. Inhibitors of the proteins upregulated by DATS may be needed to improve chemopreventive efficacy of this phytochemical.