I. E. Eremin, Vitaliy V. Neshtimenko, D. S. Shcherban, D. Fomin
{"title":"Alternative relativistic formulation of linear spectrum of hydrogen-like systems","authors":"I. E. Eremin, Vitaliy V. Neshtimenko, D. S. Shcherban, D. Fomin","doi":"10.35470/2226-4116-2020-9-4-171-181","DOIUrl":null,"url":null,"abstract":"The article describes the possibility of describing the electronic structure of the simplest atomic systems within corpuscular physics theory. The proposed method allows to derive the Rydberg frequency constant without using quantum Bohr postulates. Adequate results of the same type of calculation of the energy levels of the first five chemical elements that are in the maximum degree of ionization are presented. The results of the paper can increase the accuracy and reduce the computational complexity of models of quantum processes and phenomena. This, in turn, may allow one to develop more efficient models and algorithms for controlling such systems.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2020-9-4-171-181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The article describes the possibility of describing the electronic structure of the simplest atomic systems within corpuscular physics theory. The proposed method allows to derive the Rydberg frequency constant without using quantum Bohr postulates. Adequate results of the same type of calculation of the energy levels of the first five chemical elements that are in the maximum degree of ionization are presented. The results of the paper can increase the accuracy and reduce the computational complexity of models of quantum processes and phenomena. This, in turn, may allow one to develop more efficient models and algorithms for controlling such systems.
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.