Determination of different types of fixed effects in three-dimensional panels*

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2021-10-21 DOI:10.1080/07474938.2021.1889176
Xun Lu, Ke Miao, Liangjun Su
{"title":"Determination of different types of fixed effects in three-dimensional panels*","authors":"Xun Lu, Ke Miao, Liangjun Su","doi":"10.1080/07474938.2021.1889176","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a jackknife method to determine the type of fixed effects in three-dimensional panel data models. We show that with probability approaching 1, the method can select the correct type of fixed effects in the presence of only weak serial or cross-sectional dependence among the error terms. In the presence of strong serial correlation, we propose a modified jackknife method and justify its selection consistency. Monte Carlo simulations demonstrate the excellent finite sample performance of our method. Applications to two datasets in macroeconomics and international trade reveal the usefulness of our method.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"40 1","pages":"867 - 898"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474938.2021.1889176","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2021.1889176","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this paper, we propose a jackknife method to determine the type of fixed effects in three-dimensional panel data models. We show that with probability approaching 1, the method can select the correct type of fixed effects in the presence of only weak serial or cross-sectional dependence among the error terms. In the presence of strong serial correlation, we propose a modified jackknife method and justify its selection consistency. Monte Carlo simulations demonstrate the excellent finite sample performance of our method. Applications to two datasets in macroeconomics and international trade reveal the usefulness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维面板中不同类型固定效果的确定*
摘要在本文中,我们提出了一种确定三维面板数据模型中固定效应类型的jackknife方法。我们表明,在概率接近1的情况下,该方法可以在误差项中仅存在弱序列或截面相关性的情况下选择正确类型的固定效应。在存在强序列相关性的情况下,我们提出了一种改进的jacknife方法,并证明了其选择的一致性。蒙特卡罗模拟证明了我们的方法具有良好的有限样本性能。在宏观经济学和国际贸易的两个数据集上的应用表明了我们的方法的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1