Cytocompatible magnetostrictive microstructures for nano- and microparticle manipulation on linear strain response piezoelectrics

Q1 Materials Science Multifunctional Materials Pub Date : 2018-11-05 DOI:10.1088/2399-7532/aae4d7
Zhuyun Xiao, Reem Khojah, M. Chooljian, R. Conte, J. Schneider, Kevin Fitzell, R. Chopdekar, Yilian Wang, A. Scholl, Jane P. Chang, G. Carman, J. Bokor, D. Di Carlo, R. Candler
{"title":"Cytocompatible magnetostrictive microstructures for nano- and microparticle manipulation on linear strain response piezoelectrics","authors":"Zhuyun Xiao, Reem Khojah, M. Chooljian, R. Conte, J. Schneider, Kevin Fitzell, R. Chopdekar, Yilian Wang, A. Scholl, Jane P. Chang, G. Carman, J. Bokor, D. Di Carlo, R. Candler","doi":"10.1088/2399-7532/aae4d7","DOIUrl":null,"url":null,"abstract":"In this work, we investigate polycrystalline Ni and FeGa magnetostrictive microstructures on pre-poled (011)-cut single crystal [Pb(Mg1/3Nb2/3)O3]1−x-[PbTiO3]x (PMN-PT, x ≈ 0.31) with linear strain profile versus applied electric field. Magnetostrictive microstructure arrays with various geometries are patterned on PMN-PT. Functionalized magnetic beads are trapped by localized stray fields originating from the microstructures. With an applied electric field, the magnetic domains are actuated, inducing the motion of the coupled particles with sub-micrometer precision. This work shows promise of using energy-efficient electric-field-controlled magnetostrictive micro- and nanostructures for manipulating magnetic beads via a linear strain response. The work also demonstrates the viability of cells suspended in solution on these structures when subject to applied electric fields, proving the cytocompatibility of the platform for live cell sorting applications.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/2399-7532/aae4d7","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multifunctional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-7532/aae4d7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 7

Abstract

In this work, we investigate polycrystalline Ni and FeGa magnetostrictive microstructures on pre-poled (011)-cut single crystal [Pb(Mg1/3Nb2/3)O3]1−x-[PbTiO3]x (PMN-PT, x ≈ 0.31) with linear strain profile versus applied electric field. Magnetostrictive microstructure arrays with various geometries are patterned on PMN-PT. Functionalized magnetic beads are trapped by localized stray fields originating from the microstructures. With an applied electric field, the magnetic domains are actuated, inducing the motion of the coupled particles with sub-micrometer precision. This work shows promise of using energy-efficient electric-field-controlled magnetostrictive micro- and nanostructures for manipulating magnetic beads via a linear strain response. The work also demonstrates the viability of cells suspended in solution on these structures when subject to applied electric fields, proving the cytocompatibility of the platform for live cell sorting applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性应变响应压电材料的纳米和微粒操作的细胞相容磁致伸缩微结构
在这项工作中,我们研究了预极化(011)切割单晶[Pb(Mg1/3Nb2/3)O3]1−x-[PbTiO3]x(PMN-PT,x≈0.31)上的多晶Ni和FeGa磁致伸缩微观结构,其应变曲线与外加电场呈线性关系。在PMN-PT上图案化了具有各种几何形状的磁致伸缩微结构阵列。功能化的磁珠被源自微观结构的局部杂散场捕获。通过施加电场,磁畴被致动,从而以亚微米精度诱导耦合粒子的运动。这项工作显示了使用高能效电场控制的磁致伸缩微结构和纳米结构通过线性应变响应操纵磁珠的前景。这项工作还证明了悬浮在这些结构上的溶液中的细胞在受到电场作用时的生存能力,证明了该平台对活细胞分选应用的细胞相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multifunctional Materials
Multifunctional Materials Materials Science-Materials Science (miscellaneous)
CiteScore
12.80
自引率
0.00%
发文量
9
期刊最新文献
Sustainably Grown: The Underdog Robots of the Future Origami-patterned capacitor with programmed strain sensitivity Mechanical, electrochemical and multifunctional performance of a CFRP/carbon aerogel structural supercapacitor and its corresponding monofunctional equivalents Optically controlled grasping-slipping robot moving on tubular surfaces Encapsulation and on-demand release of functional materials from conductive nanofibers via electrical signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1