An experimental workflow for identifying RNA m6A alterations in cellular senescence by methylated RNA immunoprecipitation sequencing

Yue Shi, Zeming Wu, Weiqi Zhang, J. Qu, W. Ci, Guang-Hui Liu
{"title":"An experimental workflow for identifying RNA m6A alterations in cellular senescence by methylated RNA immunoprecipitation sequencing","authors":"Yue Shi, Zeming Wu, Weiqi Zhang, J. Qu, W. Ci, Guang-Hui Liu","doi":"10.14440/jbm.2023.403","DOIUrl":null,"url":null,"abstract":"N6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotic cells, is known to play regulatory roles in a wide array of biological processes, including aging and cellular senescence. To investigate such roles, the m6A modification can be identified across the entire transcriptome by immunoprecipitation of methylated RNA with an anti-m6A antibody, followed by high-throughput sequencing (meRIP-seq or m6A-seq). Presented here is a protocol for employing meRIP-seq to profile the RNA m6A landscape in senescent human cells. We described, in detail, sample preparation, mRNA isolation, immunoprecipitation, library preparation, sequencing, bioinformatic analysis and validation. We also provided tips and considerations for the optimization and interpretation of the results. Our protocol serves as a methodological resource for investigating transcriptomic m6A alterations in cellular senescence as well as a valuable paradigm for the validation of genes of interest.","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2023.403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

N6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotic cells, is known to play regulatory roles in a wide array of biological processes, including aging and cellular senescence. To investigate such roles, the m6A modification can be identified across the entire transcriptome by immunoprecipitation of methylated RNA with an anti-m6A antibody, followed by high-throughput sequencing (meRIP-seq or m6A-seq). Presented here is a protocol for employing meRIP-seq to profile the RNA m6A landscape in senescent human cells. We described, in detail, sample preparation, mRNA isolation, immunoprecipitation, library preparation, sequencing, bioinformatic analysis and validation. We also provided tips and considerations for the optimization and interpretation of the results. Our protocol serves as a methodological resource for investigating transcriptomic m6A alterations in cellular senescence as well as a valuable paradigm for the validation of genes of interest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过甲基化RNA免疫沉淀测序鉴定细胞衰老中RNA m6A变化的实验流程
N6-甲基腺苷(m6A)是真核细胞中最普遍的信使核糖核酸修饰,已知在包括衰老和细胞衰老在内的一系列生物过程中发挥调节作用。为了研究这种作用,可以通过用抗m6A抗体免疫沉淀甲基化RNA,然后进行高通量测序(meRIP-seq或m6A-seq),在整个转录组中鉴定m6A修饰。本文介绍了一种使用meRIP-seq来分析衰老人类细胞中RNA m6A景观的方案。我们详细描述了样品制备、信使核糖核酸分离、免疫沉淀、文库制备、测序、生物信息学分析和验证。我们还提供了优化和解释结果的提示和注意事项。我们的方案是研究细胞衰老中转录组m6A变化的方法学资源,也是验证感兴趣基因的有价值的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extraordinary variance in meta-analysis of venom toxicity of 160 most lethal ophidians and guidelines for estimating human lethal dose range. Effect of health-promoting behaviors and menopausal symptoms of urban women of Hyderabad: A randomized controlled trial. Evaluation of positioning accuracy in head-and-neck cancer treatment: A cone beam computed tomography assessment of three immobilization devices with volumetric modulated arc therapy. The neuronal density in the rostral pole of substantia nigra pars compacta in Wistar Albino rats from Rijswijk rats: A link to spike-wave seizures. Genetic insights into endurance athlete status: A meta-analysis of ACVR1B, AGT, FTO, IL-6, and NRF2 gene polymorphisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1