{"title":"The influence of separately and combined bentonite and kaolinite as binders for pelletization of NaA zeolite from coal fly ash","authors":"T. Bertolini, D. Fungaro, A. Mahmoud","doi":"10.1590/0366-69132022683873322","DOIUrl":null,"url":null,"abstract":"Pelletization of zeolitic materials is required to facilitate their practical industrial and commercial applications. Zeolite-NaA was synthesized from fly ash by the fusion method and shaped into spherical granules. Bentonite, kaolinite, and a combination of bentonite with kaolinite were tested as binders with different contents from 5 to 10 wt%. The pellet formation was optimized. The physicochemical properties of binders, zeolite powder, and zeolite granular were characterized by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption/desorption isotherm, and scanning electron microscopy (SEM) among other techniques. Deformation and breakage behavior of spherical granulates by compression was also studied. The best performance was obtained by the pellet with 10% bentonite with satisfactory mechanical strength and water resistance. The XRD and SEM results revealed NaA zeolite granular with a typical cubic shape and high crystallinity formed on the surface of bentonite. This result presents a potential use of the coal fly ash to obtain pelletized NaA zeolite following the principles of circular economy and the s ustainable development goals ( SDGs ), particularly SDG 12 .","PeriodicalId":9824,"journal":{"name":"Cerâmica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerâmica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0366-69132022683873322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1
Abstract
Pelletization of zeolitic materials is required to facilitate their practical industrial and commercial applications. Zeolite-NaA was synthesized from fly ash by the fusion method and shaped into spherical granules. Bentonite, kaolinite, and a combination of bentonite with kaolinite were tested as binders with different contents from 5 to 10 wt%. The pellet formation was optimized. The physicochemical properties of binders, zeolite powder, and zeolite granular were characterized by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption/desorption isotherm, and scanning electron microscopy (SEM) among other techniques. Deformation and breakage behavior of spherical granulates by compression was also studied. The best performance was obtained by the pellet with 10% bentonite with satisfactory mechanical strength and water resistance. The XRD and SEM results revealed NaA zeolite granular with a typical cubic shape and high crystallinity formed on the surface of bentonite. This result presents a potential use of the coal fly ash to obtain pelletized NaA zeolite following the principles of circular economy and the s ustainable development goals ( SDGs ), particularly SDG 12 .
期刊介绍:
A Revista Cerâmica, órgão oficial da Associação Brasileira de Cerâmica (ABCERAM) publica contribuições originais de interesse na área de cerâmica, compreendendo arte cerâmica, abrasivos, biocerâmicas, cerâmicas avançadas, cerâmica branca, cerâmica de mesa, cerâmica eletroeletrônica, cerâmica estrutural, cerâmica magnética, cerâmica nuclear, cerâmica óptica, cerâmica química, cerâmica termomecânica, cerâmica vermelha, cimento, compósitos de matriz cerâmica, materiais refratários, materiais de revestimento, matérias-primas, vidrados, vidros e vitrocerâmicas, análise microestrutural, ciência básica, instrumentação, processos de fabricação, síntese de pós, técnicas de caracterização etc.