Emerging applications in mass spectrometry imaging; enablers and roadblocks

Q3 Chemistry Journal of Spectral Imaging Pub Date : 2020-10-26 DOI:10.1255/jsi.2020.a13
C. Russo, C. Heaton, Lucy Flint, O. Voloaca, S. Haywood-Small, M. Clench, S. Francese, L. Cole
{"title":"Emerging applications in mass spectrometry imaging; enablers and roadblocks","authors":"C. Russo, C. Heaton, Lucy Flint, O. Voloaca, S. Haywood-Small, M. Clench, S. Francese, L. Cole","doi":"10.1255/jsi.2020.a13","DOIUrl":null,"url":null,"abstract":"Mass spectrometry imaging (MSI) is a powerful and versatile technique able to investigate the spatial distribution of multiple non-labelled endogenous and exogenous analytes simultaneously, within a wide range of samples. Over the last two decades, MSI has found widespread application for an extensive range of disciplines including pre-clinical drug discovery, clinical applications and human identification for forensic purposes. Technical advances in both instrumentation and software capabilities have led to a continual increase in the interest in MSI; however, there are still some limitations. In this review, we discuss the emerging applications in MSI that significantly impact three key areas of mass spectrometry (MS) research—clinical, pre-clinical and forensics—and roadblocks to the expansion of use of MSI in these areas.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2020.a13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry imaging (MSI) is a powerful and versatile technique able to investigate the spatial distribution of multiple non-labelled endogenous and exogenous analytes simultaneously, within a wide range of samples. Over the last two decades, MSI has found widespread application for an extensive range of disciplines including pre-clinical drug discovery, clinical applications and human identification for forensic purposes. Technical advances in both instrumentation and software capabilities have led to a continual increase in the interest in MSI; however, there are still some limitations. In this review, we discuss the emerging applications in MSI that significantly impact three key areas of mass spectrometry (MS) research—clinical, pre-clinical and forensics—and roadblocks to the expansion of use of MSI in these areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质谱成像的新兴应用;使能因素和障碍
质谱成像(MSI)是一种强大而通用的技术,能够在大范围的样品中同时研究多种未标记的内源性和外源性分析物的空间分布。在过去的二十年里,MSI在广泛的学科中得到了广泛的应用,包括临床前药物发现、临床应用和用于法医目的的人体识别。仪器和软件能力方面的技术进步导致人们对MSI的兴趣不断增加;然而,仍然存在一些局限性。在这篇综述中,我们讨论了MSI的新兴应用,这些应用对质谱(MS)研究的三个关键领域——临床、临床前和法医学——产生了重大影响,并阻碍了MSI在这些领域的推广应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
期刊最新文献
Estimation of pigment concentration in LDPE via in-line hyperspectral imaging and machine learning The hybrid approach—convolutional neural networks and expectation maximisation algorithm—for tomographic reconstruction of hyperspectral images Comparison of 2D and 3D semantic segmentation in urban areas using fused hyperspectral and lidar data Comparison of different illumination systems for moisture prediction in cereal bars using hyperspectral imaging technology Reflectance spectra and AVIRIS-NG airborne hyperspectral data analysis for mapping ultramafic rocks in igneous terrain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1