Janaki Gooty, G. Banks, Andrew C. Loignon, Scott Tonidandel, Courtney E. Williams
{"title":"Meta-Analyses as a Multi-Level Model","authors":"Janaki Gooty, G. Banks, Andrew C. Loignon, Scott Tonidandel, Courtney E. Williams","doi":"10.1177/1094428119857471","DOIUrl":null,"url":null,"abstract":"Meta-analyses are well known and widely implemented in almost every domain of research in management as well as the social, medical, and behavioral sciences. While this technique is useful for determining validity coefficients (i.e., effect sizes), meta-analyses are predicated on the assumption of independence of primary effect sizes, which might be routinely violated in the organizational sciences. Here, we discuss the implications of violating the independence assumption and demonstrate how meta-analysis could be cast as a multilevel, variance known (Vknown) model to account for such dependency in primary studies’ effect sizes. We illustrate such techniques for meta-analytic data via the HLM 7.0 software as it remains the most widely used multilevel analyses software in management. In so doing, we draw on examples in educational psychology (where such techniques were first developed), organizational sciences, and a Monte Carlo simulation (Appendix). We conclude with a discussion of implications, caveats, and future extensions. Our Appendix details features of a newly developed application that is free (based on R), user-friendly, and provides an alternative to the HLM program.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"24 1","pages":"389 - 411"},"PeriodicalIF":8.9000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1094428119857471","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/1094428119857471","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 6
Abstract
Meta-analyses are well known and widely implemented in almost every domain of research in management as well as the social, medical, and behavioral sciences. While this technique is useful for determining validity coefficients (i.e., effect sizes), meta-analyses are predicated on the assumption of independence of primary effect sizes, which might be routinely violated in the organizational sciences. Here, we discuss the implications of violating the independence assumption and demonstrate how meta-analysis could be cast as a multilevel, variance known (Vknown) model to account for such dependency in primary studies’ effect sizes. We illustrate such techniques for meta-analytic data via the HLM 7.0 software as it remains the most widely used multilevel analyses software in management. In so doing, we draw on examples in educational psychology (where such techniques were first developed), organizational sciences, and a Monte Carlo simulation (Appendix). We conclude with a discussion of implications, caveats, and future extensions. Our Appendix details features of a newly developed application that is free (based on R), user-friendly, and provides an alternative to the HLM program.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.