Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency

IF 1 4区 材料科学 Journal of Ovonic Research Pub Date : 2022-06-01 DOI:10.15251/jor.2022.183.395
A. Islam, N. Bin Alamgir, S. Chowdhury, S. M. Billah
{"title":"Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency","authors":"A. Islam, N. Bin Alamgir, S. Chowdhury, S. M. Billah","doi":"10.15251/jor.2022.183.395","DOIUrl":null,"url":null,"abstract":"In this study, numerical analysis on an Sn-based planner heterojunction perovskite device structure of Glass/ FTO/ ZnO/ CH3NH3SnI3/ CZTS/ Metal, with CH3NH3SnI3 as an absorber layer, was performed by using the solar cell device simulator SCAPS 1D. As an electron transport layer (ETL) and a hole transport layer (HTL), inorganic materials ZnO and CZTS (kesterite) were used. To optimize the device, the thickness of the absorber, electron, and hole transport layers, defect density, and absorber doping concentrations were varied, and their impact on device performance was evaluated. The effect of temperature and work function of various anode materials were also investigated. The optimum absorber layer thickness was found at 750 nm for the proposed structure. The acceptor concentration with a reduced defect density of the absorber layer enhances device performance significantly. For better performance, a higher work function anode material is required. The optimized solar cell achieved a maximum power conversion efficiency of 30.41% with an open-circuit voltage of 1.03 V, a short circuit current density of 34.31 mA/cm2, and a Fill Factor 86.39%. The proposed cell structure also possesses an excellent performance under high operating temperature indicating great promise for eco-friendly, low-cost solar energy harvesting.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2022.183.395","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, numerical analysis on an Sn-based planner heterojunction perovskite device structure of Glass/ FTO/ ZnO/ CH3NH3SnI3/ CZTS/ Metal, with CH3NH3SnI3 as an absorber layer, was performed by using the solar cell device simulator SCAPS 1D. As an electron transport layer (ETL) and a hole transport layer (HTL), inorganic materials ZnO and CZTS (kesterite) were used. To optimize the device, the thickness of the absorber, electron, and hole transport layers, defect density, and absorber doping concentrations were varied, and their impact on device performance was evaluated. The effect of temperature and work function of various anode materials were also investigated. The optimum absorber layer thickness was found at 750 nm for the proposed structure. The acceptor concentration with a reduced defect density of the absorber layer enhances device performance significantly. For better performance, a higher work function anode material is required. The optimized solar cell achieved a maximum power conversion efficiency of 30.41% with an open-circuit voltage of 1.03 V, a short circuit current density of 34.31 mA/cm2, and a Fill Factor 86.39%. The proposed cell structure also possesses an excellent performance under high operating temperature indicating great promise for eco-friendly, low-cost solar energy harvesting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
效率超过30%的无铅有机-无机卤化物钙钛矿太阳能电池
在本研究中,使用太阳能电池器件模拟器SCAPS 1D对以CH3NH3SnI3为吸收层的玻璃/FTO/ZnO/CH3NH3SnI3/CZTS/金属的Sn基平面异质结钙钛矿器件结构进行了数值分析。作为电子传输层(ETL)和空穴传输层(HTL),使用了无机材料ZnO和CZTS(钾橄榄石)。为了优化器件,改变吸收体、电子和空穴传输层的厚度、缺陷密度和吸收体掺杂浓度,并评估它们对器件性能的影响。还研究了不同阳极材料的温度和功函数的影响。对于所提出的结构,发现最佳吸收层厚度为750nm。吸收层的缺陷密度降低的受主浓度显著提高了器件性能。为了获得更好的性能,需要更高功函数的阳极材料。优化后的太阳能电池在1.03V的开路电压、34.31mA/cm2的短路电流密度和86.39%的填充因子下实现了30.41%的最大功率转换效率。所提出的电池结构在高工作温度下也具有优异的性能,这表明它有望实现环保、低成本的太阳能收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
1.60
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
期刊最新文献
Modified nonlinear ion drift model for TiO2 memristor: a temperature dependent study Electrochemical performance of rice grains like high Mn-doped anatase TiO2 nanoparticles as lithium-ion batteries electrode material Probing optoelectronic and thermoelectric properties of double perovskite halides Li2CuInY6 (Y = Cl, Br, I) for energy conversion applications Absorber layer improvement and performance analysis of CIGS thin-film solar cell Investigations on synthesis, growth and characterisations of a NLO material: L-Tryptophanium phosphite (LTP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1