Examining spatiotemporal trends of drought in the conterminous United States using self-organizing maps

IF 1.1 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Physical Geography Pub Date : 2022-02-14 DOI:10.1080/02723646.2022.2035891
M. Moreno, M. Sugg, Camila Moreno, Dr. Johnathan Sugg, Dr. Baker L. Perry, J. Runkle, R. Leeper
{"title":"Examining spatiotemporal trends of drought in the conterminous United States using self-organizing maps","authors":"M. Moreno, M. Sugg, Camila Moreno, Dr. Johnathan Sugg, Dr. Baker L. Perry, J. Runkle, R. Leeper","doi":"10.1080/02723646.2022.2035891","DOIUrl":null,"url":null,"abstract":"ABSTRACT Droughts are a natural, recurrent climate extreme that can inflict long-lasting devastation on natural ecosystems and socio-economic sectors. Unlike other natural hazards, drought onset is insidious and often affects a greater spatial extent over a prolonged temporal scale. In the United States the evolution of drought and its impacts are typically region-specific and intensified precipitation variability may obscure how drought may manifest. In this study, we examine the spatiotemporal trends of drought using self-organizing maps (SOM), competitive learning subset of artificial neural networks (ANN), requiring unsupervised training of inputs. We introduced monthly Palmer Drought Severity Index (PDSI) values to the SOM to identify existing clusters of wetting and drying patterns from 1895 to 2016. After training, we created cartographic visualizations of the SOM output and conducted a subsequent time-series analysis to link with the geographic patterns of drought. Over the last 40 years, precipitation intensified in the Northeast, Midwest, and upper Great Plains across several nodes. Across the majority of SOM patterns, we identified no significant changes of drying or wetting patterns over the last century for the greater part of the CONUS.","PeriodicalId":54618,"journal":{"name":"Physical Geography","volume":"43 1","pages":"680 - 699"},"PeriodicalIF":1.1000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/02723646.2022.2035891","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Droughts are a natural, recurrent climate extreme that can inflict long-lasting devastation on natural ecosystems and socio-economic sectors. Unlike other natural hazards, drought onset is insidious and often affects a greater spatial extent over a prolonged temporal scale. In the United States the evolution of drought and its impacts are typically region-specific and intensified precipitation variability may obscure how drought may manifest. In this study, we examine the spatiotemporal trends of drought using self-organizing maps (SOM), competitive learning subset of artificial neural networks (ANN), requiring unsupervised training of inputs. We introduced monthly Palmer Drought Severity Index (PDSI) values to the SOM to identify existing clusters of wetting and drying patterns from 1895 to 2016. After training, we created cartographic visualizations of the SOM output and conducted a subsequent time-series analysis to link with the geographic patterns of drought. Over the last 40 years, precipitation intensified in the Northeast, Midwest, and upper Great Plains across several nodes. Across the majority of SOM patterns, we identified no significant changes of drying or wetting patterns over the last century for the greater part of the CONUS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自组织地图研究美国连续干旱的时空趋势
摘要干旱是一种自然的、反复发生的极端气候,可能对自然生态系统和社会经济部门造成长期破坏。与其他自然灾害不同,干旱的发生是隐蔽的,通常在较长的时间尺度上影响更大的空间范围。在美国,干旱的演变及其影响通常是特定地区的,降水变化加剧可能会掩盖干旱的表现。在这项研究中,我们使用自组织映射(SOM)来检验干旱的时空趋势,自组织映射是人工神经网络的竞争学习子集,需要对输入进行无监督训练。我们在SOM中引入了月度Palmer干旱严重性指数(PDSI)值,以确定1895年至2016年期间存在的湿润和干燥模式集群。培训后,我们创建了SOM输出的地图可视化,并进行了随后的时间序列分析,以与干旱的地理模式联系起来。在过去的40年里,东北部、中西部和大平原上游的几个节点的降水量都有所增加。在大多数SOM模式中,我们发现上个世纪CONUS大部分地区的干燥或润湿模式没有显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Geography
Physical Geography 地学-地球科学综合
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
6 months
期刊介绍: Physical Geography disseminates significant research in the environmental sciences, including research that integrates environmental processes and human activities. It publishes original papers devoted to research in climatology, geomorphology, hydrology, biogeography, soil science, human-environment interactions, and research methods in physical geography, and welcomes original contributions on topics at the intersection of two or more of these categories.
期刊最新文献
Rainfall analysis of the May 2021 southeastern Texas and southern Louisiana flood Tectonic controls on the morphometry of alluvial fans in an arid region, northeast Iran Assessment of geomorphic status and recovery potential in anthropogenically altered river of Eastern India Temporal change in channel form and hydraulic behaviour of a tropical river due to natural forcing and anthropogenic interventions On the attribution of changes in streamflow conditions to climate variability in North Carolina Piedmont, United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1