Routine, Molecular, and Sequence-Based Antimicrobial Susceptibility Testing: Progression from Research Databases to Future Predictive Models

G. Terrance Walker Ph.D.
{"title":"Routine, Molecular, and Sequence-Based Antimicrobial Susceptibility Testing: Progression from Research Databases to Future Predictive Models","authors":"G. Terrance Walker Ph.D.","doi":"10.1016/j.clinmicnews.2021.09.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Automated antimicrobial susceptibility testing (AST) is the standard clinical diagnostic for </span>antibiotic resistance. The </span>polymerase chain reaction<span><span> and genome sequencing offer alternative molecular AST approaches. This review compares practical advantages, disadvantages, and advances across the three AST methods for clinical diagnosis of antibiotic resistance with an eye toward coordinated hybrid approaches leveraging adaptive artificial intelligence that responds to patient demographics, vital signs, and diagnostic test results against a backdrop of evolving </span>epidemiology and local outbreaks monitored through coordinated public health surveillance.</span></p></div>","PeriodicalId":39211,"journal":{"name":"Clinical Microbiology Newsletter","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Microbiology Newsletter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196439921000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Automated antimicrobial susceptibility testing (AST) is the standard clinical diagnostic for antibiotic resistance. The polymerase chain reaction and genome sequencing offer alternative molecular AST approaches. This review compares practical advantages, disadvantages, and advances across the three AST methods for clinical diagnosis of antibiotic resistance with an eye toward coordinated hybrid approaches leveraging adaptive artificial intelligence that responds to patient demographics, vital signs, and diagnostic test results against a backdrop of evolving epidemiology and local outbreaks monitored through coordinated public health surveillance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
常规,分子和基于序列的抗菌药物敏感性测试:从研究数据库到未来预测模型的进展
自动抗菌药物敏感性试验(AST)是抗生素耐药性的标准临床诊断。聚合酶链反应和基因组测序提供了替代的分子AST方法。本综述比较了用于抗生素耐药性临床诊断的三种AST方法的实际优点、缺点和进展,并着眼于协调混合方法,利用自适应人工智能对患者人口统计学、生命体征和诊断测试结果做出反应,以应对不断演变的流行病学背景和通过协调公共卫生监测监测的当地疫情。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical Microbiology Newsletter
Clinical Microbiology Newsletter Medicine-Infectious Diseases
CiteScore
2.20
自引率
0.00%
发文量
35
审稿时长
53 days
期刊介绍: Highly respected for its ability to keep pace with advances in this fast moving field, Clinical Microbiology Newsletter has quickly become a “benchmark” for anyone in the lab. Twice a month the newsletter reports on changes that affect your work, ranging from articles on new diagnostic techniques, to surveys of how readers handle blood cultures, to editorials questioning common procedures and suggesting new ones.
期刊最新文献
Current scenario and future prospect of scabies treatment: A comprehensive review “Eye see worms on the down Loa”: A case study of microfilarial co-infection General perspectives on dengue fever Navigating the new norm: The FDA's final rule on laboratory developed tests (LDTs) and its impact on clinical laboratory operations Neisseria meningitidis pyelonephritis: A rare and unusual presentation of an established pathogen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1