The Relation Between Photoconductivity Threshold and Open-Circuit Voltage in Organic Solar Cells

IF 0.5 Q4 PHYSICS, APPLIED Latvian Journal of Physics and Technical Sciences Pub Date : 2022-02-01 DOI:10.2478/lpts-2022-0003
R. Grzibovskis, A. Ruduss, A. Polaks
{"title":"The Relation Between Photoconductivity Threshold and Open-Circuit Voltage in Organic Solar Cells","authors":"R. Grzibovskis, A. Ruduss, A. Polaks","doi":"10.2478/lpts-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract Most of the solar cell parameters (short-circuit current, fill factor, power conversion efficiency) can only be determined by creating and measuring the solar cell. However, there is an empirical relation that links energy level values of the materials in the active layer to an open-circuit voltage (Uoc) of the solar cell. Due to a variety of possible methods used to determine energy level values and the dispersion of obtained results, this estimate is not always correct. Even if correct energy level values are obtained for separate materials, energy level shift takes place at the interfaces when two materials are mixed. That is why a simple and reliable experimental method for Uoc estimation is required. Usually, photoconductivity is used to obtain the energy gap between molecule ionization energy and electron affinity of a single material. When two materials are mixed, direct charge transfer from donor to acceptor molecule can be observed. The threshold energy (ECT) shows the real difference between donor molecule ionization energy and acceptor molecule electron affinity. This difference should correspond to the Uoc. The present study makes the comparison between the open-circuit voltage estimated from material energy level values, the obtained ECT values for various donor:acceptor systems, and the real Uoc obtained from solar cell measurements. Strong correlation between ECT and Uoc is obtained and the photoconductivity measurements can be used in the estimation of Uoc.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"59 1","pages":"21 - 29"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Most of the solar cell parameters (short-circuit current, fill factor, power conversion efficiency) can only be determined by creating and measuring the solar cell. However, there is an empirical relation that links energy level values of the materials in the active layer to an open-circuit voltage (Uoc) of the solar cell. Due to a variety of possible methods used to determine energy level values and the dispersion of obtained results, this estimate is not always correct. Even if correct energy level values are obtained for separate materials, energy level shift takes place at the interfaces when two materials are mixed. That is why a simple and reliable experimental method for Uoc estimation is required. Usually, photoconductivity is used to obtain the energy gap between molecule ionization energy and electron affinity of a single material. When two materials are mixed, direct charge transfer from donor to acceptor molecule can be observed. The threshold energy (ECT) shows the real difference between donor molecule ionization energy and acceptor molecule electron affinity. This difference should correspond to the Uoc. The present study makes the comparison between the open-circuit voltage estimated from material energy level values, the obtained ECT values for various donor:acceptor systems, and the real Uoc obtained from solar cell measurements. Strong correlation between ECT and Uoc is obtained and the photoconductivity measurements can be used in the estimation of Uoc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机太阳能电池光导阈值与开路电压的关系
太阳能电池的大部分参数(短路电流、填充系数、功率转换效率)只能通过制造和测量来确定。然而,有源层中材料的能级值与太阳能电池的开路电压(Uoc)之间存在经验关系。由于各种可能的方法用于确定能级值和得到的结果的分散,这种估计并不总是正确的。即使对单独的材料获得正确的能级值,当两种材料混合时,在界面处也会发生能级移动。这就是为什么需要一种简单可靠的Uoc估计实验方法。通常,光电导率用于获得单个材料的分子电离能与电子亲和能之间的能隙。当两种物质混合时,可以观察到电荷从供体分子直接转移到受体分子。阈值能(ECT)显示了供体分子电离能与受体分子电子亲和能之间的真实差异。这个差异应该对应于Uoc。本研究比较了由材料能级值估计的开路电压、各种供体和受体系统的ECT值以及由太阳能电池测量得到的实际Uoc。光电导率测量结果可用于光电导率的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
16.70%
发文量
41
审稿时长
5 weeks
期刊介绍: Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.
期刊最新文献
The Use of Renewable Energy and Capillary Heat Exchangers for Energy Savings in the Existing Apartment Modelling of Methanol Production From Biogas Applying Dynamic U-Value Measurements for State Forecasting in Buildings Numerical Insights Into Gas Mixing System Design for Energy Conversion Processes Density-Based Topological Optimization of 3D-Printed Casts for Fracture Treatment with Freefem Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1