Feedback control for random, linear hyperbolic balance laws

IF 1.5 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal for Uncertainty Quantification Pub Date : 2020-07-01 DOI:10.1615/int.j.uncertaintyquantification.2021037183
Stephan Gerster, M. Bambach, M. Herty, M. Imran
{"title":"Feedback control for random, linear hyperbolic balance laws","authors":"Stephan Gerster, M. Bambach, M. Herty, M. Imran","doi":"10.1615/int.j.uncertaintyquantification.2021037183","DOIUrl":null,"url":null,"abstract":"We design the controls of physical systems that are faced by uncertainties. The system dynamics are described by random hyperbolic balance laws. The control aims to steer the system to a desired state under uncertainties. We propose a control based on Lyapunov stability analysis of a suitable series expansion of the random dynamics. The control damps the impact of uncertainties exponentially fast in time. The presented approach can be applied to a large class of physical systems and random perturbations, as~e.g.~Gaussian processes. We illustrate the control effect on a stochastic viscoplastic material model.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2021037183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We design the controls of physical systems that are faced by uncertainties. The system dynamics are described by random hyperbolic balance laws. The control aims to steer the system to a desired state under uncertainties. We propose a control based on Lyapunov stability analysis of a suitable series expansion of the random dynamics. The control damps the impact of uncertainties exponentially fast in time. The presented approach can be applied to a large class of physical systems and random perturbations, as~e.g.~Gaussian processes. We illustrate the control effect on a stochastic viscoplastic material model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机线性双曲平衡律的反馈控制
我们设计了面对不确定性的物理系统的控制。系统动力学由随机双曲平衡定律描述。该控制旨在引导系统在不确定的情况下达到所需的状态。我们提出了一种基于李雅普诺夫稳定性分析的控制方法,该方法适用于随机动力学的级数展开。该控制在时间上以指数级的速度衰减不确定性的影响。所提出的方法可以应用于一大类物理系统和随机扰动,例如高斯过程。我们说明了随机粘塑性材料模型的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Uncertainty Quantification
International Journal for Uncertainty Quantification ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.60
自引率
5.90%
发文量
28
期刊介绍: The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.
期刊最新文献
Bayesian³ Active learning for regularized arbitrary multi-element polynomial chaos using information theory Sobol’ sensitivity indices– A Machine Learning approach using the Dynamic Adaptive Variances Estimator with Given Data Extremes of vector-valued processes by finite dimensional models A novel probabilistic transfer learning strategy for polynomial regression Variance-based sensitivity of Bayesian inverse problems to the prior distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1