Eline Yafelé Bijman, Hans-Michael Kaltenbach, Jörg Stelling
{"title":"Experimental analysis and modeling of single-cell time-course data","authors":"Eline Yafelé Bijman, Hans-Michael Kaltenbach, Jörg Stelling","doi":"10.1016/j.coisb.2021.100359","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary single-cell experiments produce vast amounts of data, but the interpretation of these data is far from straightforward. In particular, understanding mechanisms and sources of cell-to-cell variability, given highly complex and nonlinear cellular networks, precludes intuitive interpretation. It requires careful computational and mathematical analysis instead. Here, we discuss different types of single-cell data and computational, model-based methods currently used to analyze them. We argue that mechanistic models incorporating subpopulation or cell-specific parameters can help to identify sources of variation and to understand experimentally observed behaviors. We highlight how data types and qualities, together with the nonlinearity of single-cell dynamics, make it challenging to identify the correct underlying biological mechanisms and we outline avenues to address these challenges.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"28 ","pages":"Article 100359"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.coisb.2021.100359","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Contemporary single-cell experiments produce vast amounts of data, but the interpretation of these data is far from straightforward. In particular, understanding mechanisms and sources of cell-to-cell variability, given highly complex and nonlinear cellular networks, precludes intuitive interpretation. It requires careful computational and mathematical analysis instead. Here, we discuss different types of single-cell data and computational, model-based methods currently used to analyze them. We argue that mechanistic models incorporating subpopulation or cell-specific parameters can help to identify sources of variation and to understand experimentally observed behaviors. We highlight how data types and qualities, together with the nonlinearity of single-cell dynamics, make it challenging to identify the correct underlying biological mechanisms and we outline avenues to address these challenges.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution