{"title":"NUMERICAL ANALYSIS OF REINFORCED CONCRETE BEAM-COLUMN JOINT UNDER ACCIDENTAL IMPACT","authors":"S. Savin","doi":"10.24874/jsscm.2021.15.01.10","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to create a universal computational model of a plane-stressed joint element, which could be implemented as a special finite element of the beam-column subassembly integrated into the FEA procedure to improve its accuracy. The combination both of the finite element method and the finite difference method has been accepted to simulate the structural behavior of monolithic reinforced concrete joints of building frames. The finite difference method is used directly for analysis the stress-strain state of a 2D stressed member of a monolithic joint, and the FEM is used for preliminary obtaining the conditions on the contour of this plane stressed member. The proposed model allows considering the discrete reinforcement, as well as the disruption of the adhesion of the reinforcing bars to concrete matrix along the contact surface. For the purposes of implementing the model, an algorithm for the stress-strain state analysis of the beam-column joint is proposed. An example of calculating an experimental frame unit based on the proposed approach is considered.","PeriodicalId":42945,"journal":{"name":"Journal of the Serbian Society for Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Serbian Society for Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/jsscm.2021.15.01.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to create a universal computational model of a plane-stressed joint element, which could be implemented as a special finite element of the beam-column subassembly integrated into the FEA procedure to improve its accuracy. The combination both of the finite element method and the finite difference method has been accepted to simulate the structural behavior of monolithic reinforced concrete joints of building frames. The finite difference method is used directly for analysis the stress-strain state of a 2D stressed member of a monolithic joint, and the FEM is used for preliminary obtaining the conditions on the contour of this plane stressed member. The proposed model allows considering the discrete reinforcement, as well as the disruption of the adhesion of the reinforcing bars to concrete matrix along the contact surface. For the purposes of implementing the model, an algorithm for the stress-strain state analysis of the beam-column joint is proposed. An example of calculating an experimental frame unit based on the proposed approach is considered.