{"title":"The Fuglede conjecture for convex domains is true in all dimensions","authors":"Nir Lev, M. Matolcsi","doi":"10.4310/ACTA.2022.v228.n2.a3","DOIUrl":null,"url":null,"abstract":"A set $\\Omega \\subset \\mathbb{R}^d$ is said to be spectral if the space $L^2(\\Omega)$ has an orthogonal basis of exponential functions. A conjecture due to Fuglede (1974) stated that $\\Omega$ is a spectral set if and only if it can tile the space by translations. While this conjecture was disproved for general sets, it has long been known that for a convex body $\\Omega \\subset \\mathbb{R}^d$ the \"tiling implies spectral\" part of the conjecture is in fact true. \nTo the contrary, the \"spectral implies tiling\" direction of the conjecture for convex bodies was proved only in $\\mathbb{R}^2$, and also in $\\mathbb{R}^3$ under the a priori assumption that $\\Omega$ is a convex polytope. In higher dimensions, this direction of the conjecture remained completely open (even in the case when $\\Omega$ is a polytope) and could not be treated using the previously developed techniques. \nIn this paper we fully settle Fuglede's conjecture for convex bodies affirmatively in all dimensions, i.e. we prove that if a convex body $\\Omega \\subset \\mathbb{R}^d$ is a spectral set then it can tile the space by translations. To prove this we introduce a new technique, involving a construction from crystallographic diffraction theory, which allows us to establish a geometric \"weak tiling\" condition necessary for a set $\\Omega \\subset \\mathbb{R}^d$ to be spectral.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2022.v228.n2.a3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 44
Abstract
A set $\Omega \subset \mathbb{R}^d$ is said to be spectral if the space $L^2(\Omega)$ has an orthogonal basis of exponential functions. A conjecture due to Fuglede (1974) stated that $\Omega$ is a spectral set if and only if it can tile the space by translations. While this conjecture was disproved for general sets, it has long been known that for a convex body $\Omega \subset \mathbb{R}^d$ the "tiling implies spectral" part of the conjecture is in fact true.
To the contrary, the "spectral implies tiling" direction of the conjecture for convex bodies was proved only in $\mathbb{R}^2$, and also in $\mathbb{R}^3$ under the a priori assumption that $\Omega$ is a convex polytope. In higher dimensions, this direction of the conjecture remained completely open (even in the case when $\Omega$ is a polytope) and could not be treated using the previously developed techniques.
In this paper we fully settle Fuglede's conjecture for convex bodies affirmatively in all dimensions, i.e. we prove that if a convex body $\Omega \subset \mathbb{R}^d$ is a spectral set then it can tile the space by translations. To prove this we introduce a new technique, involving a construction from crystallographic diffraction theory, which allows us to establish a geometric "weak tiling" condition necessary for a set $\Omega \subset \mathbb{R}^d$ to be spectral.