Genome-wide identification of the LBD transcription factor genes in common bean (Phaseolus vulgaris L.) and expression analysis under different abiotic stresses
Yanli Du, Qiang Zhao, Weijia Li, Jing Geng, Siqi Li, Xiankai Yuan, Yanhua Gu, Jingwen Zhong, Yuxian Zhang, Jidao Du
{"title":"Genome-wide identification of the LBD transcription factor genes in common bean (Phaseolus vulgaris L.) and expression analysis under different abiotic stresses","authors":"Yanli Du, Qiang Zhao, Weijia Li, Jing Geng, Siqi Li, Xiankai Yuan, Yanhua Gu, Jingwen Zhong, Yuxian Zhang, Jidao Du","doi":"10.1080/17429145.2022.2095449","DOIUrl":null,"url":null,"abstract":"ABSTRACT Lateral organ boundary Domain (LBD) proteins are plant-specific transcription factors that play a key role in plant lateral organ development and stress tolerance. However, LBD gene has not been identified in the common bean (Phaseolus vulgaris L.). Here, a total of 47 common bean LBD genes (PvLBDs) were identified. Members of the same subfamily had similar genetic structures. Synteny analysis indicated that LBDs in the common bean genome have greater collinearity with soybean (Glycine max L.) than with Arabidopsis and rice (Oryza sativa L.). Additionally, 9 pair of segmental duplication genes were identified by collinearity analysis. Phytozome data analysis showed significant differences in PvLBD gene expression abundance between different developmental stages of the same tissue. The qRT-PCR results showed that NaCl, CdCl2, and HgCl2 stresses up-regulated 19% and down-regulated 81% of the PvLBD genes. This study provides a basis for further analysis of the function of the PvLBD gene family.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"731 - 743"},"PeriodicalIF":2.6000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2022.2095449","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Lateral organ boundary Domain (LBD) proteins are plant-specific transcription factors that play a key role in plant lateral organ development and stress tolerance. However, LBD gene has not been identified in the common bean (Phaseolus vulgaris L.). Here, a total of 47 common bean LBD genes (PvLBDs) were identified. Members of the same subfamily had similar genetic structures. Synteny analysis indicated that LBDs in the common bean genome have greater collinearity with soybean (Glycine max L.) than with Arabidopsis and rice (Oryza sativa L.). Additionally, 9 pair of segmental duplication genes were identified by collinearity analysis. Phytozome data analysis showed significant differences in PvLBD gene expression abundance between different developmental stages of the same tissue. The qRT-PCR results showed that NaCl, CdCl2, and HgCl2 stresses up-regulated 19% and down-regulated 81% of the PvLBD genes. This study provides a basis for further analysis of the function of the PvLBD gene family.
期刊介绍:
Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.