S. Raeymaeckers, Yannick De Brucker, Maurizio Tosi, N. Buls, J. Mey
{"title":"Relative Perfusion Differences between Parathyroid Adenomas and the Thyroid on Multiphase 4DCT","authors":"S. Raeymaeckers, Yannick De Brucker, Maurizio Tosi, N. Buls, J. Mey","doi":"10.1155/2022/2984789","DOIUrl":null,"url":null,"abstract":"A multiphase 4DCT technique can be useful for the detection of parathyroid adenomas. Up to 16 different phases can be obtained without significant increase of exposure dose using wide beam axial scanning. This technique also allows for the calculation of perfusion parameters in suspected lesions. We present data on 19 patients with histologically proven parathyroid adenomas. We find a strong correlation between 2 perfusion parameters when comparing parathyroid adenomas and thyroid tissue: parathyroid adenomas show a 55% increase in blood flow (BF) (p < 0.001) and a 50% increase in blood volume (BV) (p < 0.001) as compared to normal thyroid tissue. The analysis of the ROC curve for the different perfusion parameters demonstrates a significantly high area under the curve for BF and BV, confirming these two perfusion parameters to be a possible discriminating tool to discern between parathyroid adenomas and thyroid tissue. These findings can help to discern parathyroid from thyroid tissue and may aid in the detection of parathyroid adenomas.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2984789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
A multiphase 4DCT technique can be useful for the detection of parathyroid adenomas. Up to 16 different phases can be obtained without significant increase of exposure dose using wide beam axial scanning. This technique also allows for the calculation of perfusion parameters in suspected lesions. We present data on 19 patients with histologically proven parathyroid adenomas. We find a strong correlation between 2 perfusion parameters when comparing parathyroid adenomas and thyroid tissue: parathyroid adenomas show a 55% increase in blood flow (BF) (p < 0.001) and a 50% increase in blood volume (BV) (p < 0.001) as compared to normal thyroid tissue. The analysis of the ROC curve for the different perfusion parameters demonstrates a significantly high area under the curve for BF and BV, confirming these two perfusion parameters to be a possible discriminating tool to discern between parathyroid adenomas and thyroid tissue. These findings can help to discern parathyroid from thyroid tissue and may aid in the detection of parathyroid adenomas.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics