Electron Beam Induced Enhancement and Suppression of Oxidation in Cu Nanoparticles in Environmental Scanning Transmission Electron Microscopy

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY ACS Nanoscience Au Pub Date : 2023-08-01 DOI:10.1021/acsnanoscienceau.3c00018
Azin Ziashahabi, Anna Elsukova, Sara Nilsson, Marco Beleggia, Peter Stanley Jørgensen, Christoph Langhammer and Shima Kadkhodazadeh*, 
{"title":"Electron Beam Induced Enhancement and Suppression of Oxidation in Cu Nanoparticles in Environmental Scanning Transmission Electron Microscopy","authors":"Azin Ziashahabi,&nbsp;Anna Elsukova,&nbsp;Sara Nilsson,&nbsp;Marco Beleggia,&nbsp;Peter Stanley Jørgensen,&nbsp;Christoph Langhammer and Shima Kadkhodazadeh*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00018","DOIUrl":null,"url":null,"abstract":"<p >We have investigated the effects of high-energy electron irradiation on the oxidation of copper nanoparticles in environmental scanning transmission electron microscopy (ESTEM). The hemispherically shaped particles were oxidized in 3 mbar of O<sub>2</sub> in a temperature range 100–200 °C. The evolution of the particles was recorded with sub-nanometer spatial resolution in situ in ESTEM. The oxidation encompasses the formation of outer and inner oxide shells on the nanoparticles, arising from the concurrent diffusion of copper and oxygen out of and into the nanoparticles, respectively. Our results reveal that the electron beam actively influences the reaction and overall accelerates the oxidation of the nanoparticles when compared to particles oxidized without exposure to the electron beam. However, the extent of this electron beam-assisted acceleration of oxidation diminishes at higher temperatures. Moreover, we observe that while oxidation through the outward diffusion of Cu<sup>+</sup> cations is enhanced, the electron beam appears to hinder oxidation through the inward diffusion of O<sup>2–</sup> anions. Our results suggest that the impact of the high-energy electrons in ESTEM oxidation of Cu nanoparticles is mostly related to kinetic energy transfer, charging, and ionization of the gas environment, and the beam can both enhance and suppress reaction rates.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00018","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

We have investigated the effects of high-energy electron irradiation on the oxidation of copper nanoparticles in environmental scanning transmission electron microscopy (ESTEM). The hemispherically shaped particles were oxidized in 3 mbar of O2 in a temperature range 100–200 °C. The evolution of the particles was recorded with sub-nanometer spatial resolution in situ in ESTEM. The oxidation encompasses the formation of outer and inner oxide shells on the nanoparticles, arising from the concurrent diffusion of copper and oxygen out of and into the nanoparticles, respectively. Our results reveal that the electron beam actively influences the reaction and overall accelerates the oxidation of the nanoparticles when compared to particles oxidized without exposure to the electron beam. However, the extent of this electron beam-assisted acceleration of oxidation diminishes at higher temperatures. Moreover, we observe that while oxidation through the outward diffusion of Cu+ cations is enhanced, the electron beam appears to hinder oxidation through the inward diffusion of O2– anions. Our results suggest that the impact of the high-energy electrons in ESTEM oxidation of Cu nanoparticles is mostly related to kinetic energy transfer, charging, and ionization of the gas environment, and the beam can both enhance and suppress reaction rates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境扫描透射电子显微镜中电子束对Cu纳米粒子氧化的增强和抑制
在环境扫描透射电子显微镜(ESTEM)下研究了高能电子辐照对铜纳米粒子氧化的影响。在100-200℃的温度范围内,将半球形颗粒在3mbar的O2中氧化。系统以亚纳米空间分辨率原位记录了颗粒的演化过程。氧化包括纳米颗粒上的外层和内部氧化壳的形成,分别是由铜和氧同时扩散到纳米颗粒内外引起的。我们的研究结果表明,与没有暴露于电子束的氧化颗粒相比,电子束积极地影响反应,并且总体上加速了纳米颗粒的氧化。然而,这种电子束辅助氧化加速的程度在较高温度下减弱。此外,我们观察到,虽然通过Cu+阳离子向外扩散的氧化增强,但电子束似乎阻碍了通过O2 -阴离子向内扩散的氧化。研究结果表明,高能电子对Cu纳米颗粒的电化学氧化的影响主要与气体环境的动能传递、充电和电离有关,并且电子束可以提高和抑制反应速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
期刊最新文献
DNA-Mediated Carbon Nanotubes Heterojunction Assembly Exploring the Substitution of Fe(III) by Gd(III) in Nanomagnetite Interband and Intraband Hot Carrier-Driven Photocatalysis on Plasmonic Bimetallic Nanoparticles: A Case Study of Au–Cu Alloy Nanoparticles Orally Administered Silver Nanoparticles Are Absorbed and Migrate to Testes in Mice Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1