One-dimensional acoustic potential landscapes guide the neurite outgrowth and affect the viability of B35 neuroblastoma cells

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2022-05-17 DOI:10.1088/1478-3975/ac70a1
Kathrin Baumgartner, Sophie C. F. Mauritz, Sebastian Angermann, Manuel S. Brugger, C. Westerhausen
{"title":"One-dimensional acoustic potential landscapes guide the neurite outgrowth and affect the viability of B35 neuroblastoma cells","authors":"Kathrin Baumgartner, Sophie C. F. Mauritz, Sebastian Angermann, Manuel S. Brugger, C. Westerhausen","doi":"10.1088/1478-3975/ac70a1","DOIUrl":null,"url":null,"abstract":"On the way towards neuronal stimulation and signalling, standing surface acoustic waves (SSAWs) have become a widely used technique to create well-defined networks of living cells in vitro during the past years. An overall challenge in this research area is to maintain cell viability in long-term treatments long enough to observe changes in cellular functions. To close this gap, we here investigate SSAW-directed neurite outgrowth of B35 (neuroblastoma) cells in microchannels on LiNbO3 chips, employing one-dimensional pulsed and continuous MHz-order SSAW signals at different intensities for up to 40 h. To increase the efficiency of future investigations, we explore the limits of applicable SSAW parameters by quantifying their viability and proliferation behaviour in this long-term setup. While cell viability is impaired for power levels above 15 dBm (32 mW), our investigations on SSAW-directed neurite outgrowth reveal a significant increase of neurites growing in preferential directions by up to 31.3% after 30 h of SSAW treatment.","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ac70a1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

On the way towards neuronal stimulation and signalling, standing surface acoustic waves (SSAWs) have become a widely used technique to create well-defined networks of living cells in vitro during the past years. An overall challenge in this research area is to maintain cell viability in long-term treatments long enough to observe changes in cellular functions. To close this gap, we here investigate SSAW-directed neurite outgrowth of B35 (neuroblastoma) cells in microchannels on LiNbO3 chips, employing one-dimensional pulsed and continuous MHz-order SSAW signals at different intensities for up to 40 h. To increase the efficiency of future investigations, we explore the limits of applicable SSAW parameters by quantifying their viability and proliferation behaviour in this long-term setup. While cell viability is impaired for power levels above 15 dBm (32 mW), our investigations on SSAW-directed neurite outgrowth reveal a significant increase of neurites growing in preferential directions by up to 31.3% after 30 h of SSAW treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一维声电位景观引导神经突起生长并影响B35神经母细胞瘤细胞的生存能力
在神经刺激和信号传导的道路上,驻表面声波(SSAWs)在过去的几年里已经成为一种广泛使用的技术,用于在体外建立定义良好的活细胞网络。该研究领域的一个总体挑战是在长期治疗中保持细胞活力,以观察细胞功能的变化。为了缩小这一差距,我们在此研究了在LiNbO3芯片的微通道中B35(神经母细胞瘤)细胞的SSAW导向的神经突生长,使用一维脉冲和连续的mhz级SSAW信号在不同强度下长达40小时。为了提高未来研究的效率,我们通过量化SSAW在长期设置中的活力和增殖行为来探索适用SSAW参数的限制。虽然超过15 dBm (32 mW)的功率水平会损害细胞活力,但我们对SSAW导向的神经突生长的研究表明,在SSAW处理30小时后,神经突向优先方向生长的显著增加了31.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
A role of fear on diseased food web model with multiple functional response. Two fitness inference schemes compared using allele frequencies from 1,068,391 sequences sampled in the UK during the COVID-19 pandemic. Unraveling the role of exercise in cancer suppression: insights from a mathematical model. An exactly solvable model for RNA polymerase during the elongation stage. A theoretical framework for predicting the heterogeneous stiffness map of brain white matter tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1