On the average secrecy capacity for indoor visible light communication systems

IF 1.9 4区 物理与天体物理 Q3 OPTICS Journal of the European Optical Society-Rapid Publications Pub Date : 2020-05-11 DOI:10.1186/s41476-020-00132-9
Jun Zheng Zhang, Ke Ke
{"title":"On the average secrecy capacity for indoor visible light communication systems","authors":"Jun Zheng Zhang,&nbsp;Ke Ke","doi":"10.1186/s41476-020-00132-9","DOIUrl":null,"url":null,"abstract":"<p>For visible light communication (VLC), the light signals are transmitted without optical fibers or any sort of wave-guiding. Due to the inherent broadcast nature, physical-layer security emerges as a promising method to protect information delivery from eavesdropping. As for the secrecy capacity of VLC channel, there exist two features. In one way, the limited optical power makes the common capacity expressions in radio-frequency (RF) communication unapplicable for VLC. In another way, several correlated geometrical parameters directly alters the Lambertian model of indoor VLC channel, which gives the secrecy capacity more meanings. However, the issue considering both aspects has not been studied recently. In this paper, from the practical scenarios, we extract a typical geometrical model to reveal the mobility principles of the legitimate receiver and the eavesdroppers. Then, we character two typical distributions of the geometrical parameter. Correspondingly, we derive the upper and lower bounds on the average secrecy capacity, which have the closed forms. Finally, simulation results show that our upper and lower bounds are tight at high optical signal-to-noise rates (OSNRs). Moreover, the geometrical features of VLC systems and distribution parameters of the receiver mobility are effectively reveal by the bounds.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-020-00132-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

For visible light communication (VLC), the light signals are transmitted without optical fibers or any sort of wave-guiding. Due to the inherent broadcast nature, physical-layer security emerges as a promising method to protect information delivery from eavesdropping. As for the secrecy capacity of VLC channel, there exist two features. In one way, the limited optical power makes the common capacity expressions in radio-frequency (RF) communication unapplicable for VLC. In another way, several correlated geometrical parameters directly alters the Lambertian model of indoor VLC channel, which gives the secrecy capacity more meanings. However, the issue considering both aspects has not been studied recently. In this paper, from the practical scenarios, we extract a typical geometrical model to reveal the mobility principles of the legitimate receiver and the eavesdroppers. Then, we character two typical distributions of the geometrical parameter. Correspondingly, we derive the upper and lower bounds on the average secrecy capacity, which have the closed forms. Finally, simulation results show that our upper and lower bounds are tight at high optical signal-to-noise rates (OSNRs). Moreover, the geometrical features of VLC systems and distribution parameters of the receiver mobility are effectively reveal by the bounds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论室内可见光通信系统的平均保密能力
对于可见光通信(VLC),光信号在没有光纤或任何形式的波导的情况下传输。由于其固有的广播性,物理层安全成为保护信息传输不被窃听的一种很有前途的方法。VLC信道的保密能力有两个特点。一方面,有限的光功率使得射频通信中常用的容量表达式不适用于VLC。另一方面,几个相关的几何参数直接改变了室内VLC信道的朗伯模型,赋予了保密能力更多的意义。然而,考虑到这两个方面的问题,目前还没有研究。本文从实际场景出发,提取了一个典型的几何模型,揭示了合法接收方和窃听方的移动原理。然后,我们描述了几何参数的两种典型分布。相应地,我们导出了平均保密能力的上界和下界,它们具有封闭形式。最后,仿真结果表明,在高信噪比(OSNRs)下,我们的上界和下界是紧密的。此外,该边界有效地揭示了VLC系统的几何特征和接收机迁移率的分布参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
期刊最新文献
Detection of zinc in pig feed based on the cavities of different shapes combined with LIBS The Symmetric and Antisymmetric Phase Modulation for the Joint Spectral Amplitude of the Biphotons in SPDC Spectral reflectance fitting based on land-based hyperspectral imaging and semi-empirical kernel-driven model for typical camouflage materials Quantum coherence and entanglement of the system of a five−level atom in the presence of nonlinear fields Implementation of FORMIDABLE: a generalized differential optical design library with NURBS capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1