Prediction of emotional competence in future education teachers through a multiple logistic regression model and classification trees

IF 1.2 Q2 EDUCATION & EDUCATIONAL RESEARCH Aula Abierta Pub Date : 2022-09-26 DOI:10.17811/rifie.51.3.2022.303-310
Elena García-Vila, M. J. Mayorga-Fernández, F. D. Guillén-Gámez, Mª del Pilar Sepúlveda-Ruiz
{"title":"Prediction of emotional competence in future education teachers through a multiple logistic regression model and classification trees","authors":"Elena García-Vila, M. J. Mayorga-Fernández, F. D. Guillén-Gámez, Mª del Pilar Sepúlveda-Ruiz","doi":"10.17811/rifie.51.3.2022.303-310","DOIUrl":null,"url":null,"abstract":"In order to know the level of emotional competence of future education teachers and evaluate the incidence that different personal and academic factors, we have used binary logistic regression and classification trees. Non-experimental design was carried out, with a sample of 359 students from the Faculties of Education of the University of Malaga and Almería. The results show that variables such as university access scores, the average mark of the first four-month period of the first year of the degree, the effort before the study, being a repeater, the choice of the degree as the first option and having siblings are significant predictors in the logistic model, where the last variable has the greatest determination capacity. Furthermore, in the segmentation tree it has been obtained that those students who do have siblings have a higher level of development of emotional competence, with a probability of 69.2% and if they have also chosen the degree as the first option, this percentage is increased to 75.9%. It can be concluded that it is essential to institutionally establish sufficient conditions so that teachers can detect the predictor variables and establish training strategies that allow increasing the level of development of the competence emotional.","PeriodicalId":8710,"journal":{"name":"Aula Abierta","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aula Abierta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17811/rifie.51.3.2022.303-310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

In order to know the level of emotional competence of future education teachers and evaluate the incidence that different personal and academic factors, we have used binary logistic regression and classification trees. Non-experimental design was carried out, with a sample of 359 students from the Faculties of Education of the University of Malaga and Almería. The results show that variables such as university access scores, the average mark of the first four-month period of the first year of the degree, the effort before the study, being a repeater, the choice of the degree as the first option and having siblings are significant predictors in the logistic model, where the last variable has the greatest determination capacity. Furthermore, in the segmentation tree it has been obtained that those students who do have siblings have a higher level of development of emotional competence, with a probability of 69.2% and if they have also chosen the degree as the first option, this percentage is increased to 75.9%. It can be concluded that it is essential to institutionally establish sufficient conditions so that teachers can detect the predictor variables and establish training strategies that allow increasing the level of development of the competence emotional.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元逻辑回归模型和分类树对未来教育教师情感能力的预测
为了了解未来教育教师的情感能力水平,并评估不同个人和学术因素的发生率,我们使用了二元逻辑回归和分类树。对马拉加大学和阿尔梅里亚大学教育学院的359名学生进行了非实验性设计。结果表明,在逻辑模型中,大学入学分数、学位第一年前四个月的平均分数、学习前的努力、作为复读生、选择学位作为第一选择以及有兄弟姐妹等变量是重要的预测因素,其中最后一个变量具有最大的决定能力。此外,在分割树中,已经发现那些有兄弟姐妹的学生具有更高水平的情感能力发展,概率为69.2%,如果他们也选择了学位作为第一选项,这一比例提高到75.9%。可以得出的结论是,必须从制度上建立足够的条件,以便教师能够检测预测变量,并制定培训策略,从而提高能力情绪的发展水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aula Abierta
Aula Abierta EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
2.00
自引率
10.00%
发文量
35
期刊介绍: Aula Abierta es una revista científica semestral (enero-junio y julio-diciembre) que publica artículos inéditos sobre Educación, de carácter empírico o teórico, en español o inglés, relevantes para los investigadores o los profesionales de la Educación, a quienes va dirigida la revista. Más del 75% de los artículos publicados serán trabajos empíricos, que comuniquen resultados de investigación originales. El resto, trabajos descriptivos sobre experiencias educativas innovadoras o de naturaleza teórica, serán publicados solo por propuesta o solicitud previa del Equipo de Dirección de la revista. El objetivo principal de Aula Abierta es contribuir a la difusión de la investigación educativa de calidad que se realiza en España. No obstante, la revista también está abierta a la publicación puntual de trabajos internacionales, que resulten de especial interés y supongan una contribución relevante al campo de la Educación.
期刊最新文献
El Prácticum de la Mención de Lengua Asturiana: un primer acercamiento a la visión de sus protagonistas. Aprendizaje basado en secuencias didácticas para enseñar a leer y a escribir a través de los objetivos de desarrollo sostenible en la formación inicial de docentes La percepción del aprendiz sobre su desarrollo competencial en una situación de aprendizaje gamificada en EFL A Systematic Review of Generative AI and (English Medium Instruction) Higher Education Conectando teoría y práctica: la metodología de Aprendizaje-Servicio en la didáctica de las lenguas en Educación Superior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1