Topological properties of metal-organic frameworks

IF 1.8 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Main Group Metal Chemistry Pub Date : 2020-01-01 DOI:10.1515/mgmc-2020-0007
H. Awais, Muhammad Jamal, M. Javaid
{"title":"Topological properties of metal-organic frameworks","authors":"H. Awais, Muhammad Jamal, M. Javaid","doi":"10.1515/mgmc-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract Metal-organic frameworks (MOFs) are porous materials formed by strong bonds between metal ions and organic ligands to represent very high surface area, large pore volume, excellent chemical stability and unique morphology. Work on synthesis, structures and characteristics of many MOFs shows the importance of these frameworks with versatile applications, such as energy storage devices of excellent electrode materials, gas storage, heterogeneous catalysis, environmental hazard, assessment of chemicals and sensing of different gases. A topological property or index is a numerical invariant that predicts the physicochemical properties of the chemical compounds of the underlying molecular graph or framework. Wiener (1947) created the practice of the topological indices (TI’s) in organic molecules with the reference of boiling point of paraffin. In this paper, we study the two different metal-organic frameworks with respect to the number of increasing layers with metal and organic ligands as well. We also compute the generalized Zagreb index and generalized Zagreb connection index of these frameworks. Moreover, the various indices and connection indices are obtained by using the aforesaid generalized versions. At the end, a comparison is also included between the indices and connection indices with the help of numerical values and their 3D plots.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"43 1","pages":"67 - 76"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2020-0007","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2020-0007","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 17

Abstract

Abstract Metal-organic frameworks (MOFs) are porous materials formed by strong bonds between metal ions and organic ligands to represent very high surface area, large pore volume, excellent chemical stability and unique morphology. Work on synthesis, structures and characteristics of many MOFs shows the importance of these frameworks with versatile applications, such as energy storage devices of excellent electrode materials, gas storage, heterogeneous catalysis, environmental hazard, assessment of chemicals and sensing of different gases. A topological property or index is a numerical invariant that predicts the physicochemical properties of the chemical compounds of the underlying molecular graph or framework. Wiener (1947) created the practice of the topological indices (TI’s) in organic molecules with the reference of boiling point of paraffin. In this paper, we study the two different metal-organic frameworks with respect to the number of increasing layers with metal and organic ligands as well. We also compute the generalized Zagreb index and generalized Zagreb connection index of these frameworks. Moreover, the various indices and connection indices are obtained by using the aforesaid generalized versions. At the end, a comparison is also included between the indices and connection indices with the help of numerical values and their 3D plots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属有机框架的拓扑性质
摘要金属有机骨架(MOFs)是由金属离子和有机配体之间的强键形成的多孔材料,具有很高的表面积、大的孔体积、优异的化学稳定性和独特的形貌。对许多MOFs的合成、结构和特性的研究表明,这些框架具有广泛应用的重要性,如优秀电极材料的储能装置、气体储存、多相催化、环境危害、化学品评估和不同气体的传感。拓扑性质或指数是一种数值不变量,用于预测底层分子图或框架的化合物的物理化学性质。Wiener(1947)以石蜡的沸点为参考,创立了有机分子拓扑指数的实践。在本文中,我们研究了两种不同的金属-有机框架与金属和有机配体的增加层数。我们还计算了这些框架的广义Zagreb指数和广义Zagre布连接指数。此外,通过使用上述广义版本来获得各种索引和连接索引。最后,借助数值和它们的3D图,还包括索引和连接索引之间的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Main Group Metal Chemistry
Main Group Metal Chemistry CHEMISTRY, INORGANIC & NUCLEAR-CHEMISTRY, ORGANIC
CiteScore
4.10
自引率
27.80%
发文量
21
审稿时长
4 weeks
期刊介绍: This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.
期刊最新文献
Two new zinc(ii) coordination complexes constructed by phenanthroline derivate: Synthesis and structure Retraction to “Aluminium(iii), Fe(ii) Complexes and Dyeing Properties of Apigenin(5,7,4′-trihydroxy flavone)” Synthesis and crystal structure of an ionic phenyltin(iv) complex of N-salicylidene-valine Lithium fluoroarylsilylamides and their structural features On computation of neighbourhood degree sum-based topological indices for zinc-based metal–organic frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1