Scholarly reference trees

Kristina Kocijan, Marko Požega, Dario Poljak
{"title":"Scholarly reference trees","authors":"Kristina Kocijan, Marko Požega, Dario Poljak","doi":"10.15291/LIBELLARIUM.V9I2.281","DOIUrl":null,"url":null,"abstract":"In this paper, we propose, explain and implement bibliometric data analysis and visualization model in a web environment. We use NLP syntactic grammars for pattern recognition of references used in scholarly publications. The extracted information is used for visualizing author egocentric data via tree like structure. The ultimate goal of this work is to use the egocentric trees for comparisons of two authors and to build networks or forests of different trees depending on the forest’s attributes. We have stumbled upon many different problems ranging from exceptions in citation style structures to optimization of visualization model in order to achieve an optimal user experience. We will give a summary of our grammars’ restrictions and will provide some ideas for possible future work that could improve the overall user experience. The proposed trees can function by themselves, or they can be implemented in digital repositories of libraries and different types of citation databases.","PeriodicalId":30549,"journal":{"name":"Libellarium Journal for the Research of Writing Books and Cultural Heritage Institutions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Libellarium Journal for the Research of Writing Books and Cultural Heritage Institutions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15291/LIBELLARIUM.V9I2.281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose, explain and implement bibliometric data analysis and visualization model in a web environment. We use NLP syntactic grammars for pattern recognition of references used in scholarly publications. The extracted information is used for visualizing author egocentric data via tree like structure. The ultimate goal of this work is to use the egocentric trees for comparisons of two authors and to build networks or forests of different trees depending on the forest’s attributes. We have stumbled upon many different problems ranging from exceptions in citation style structures to optimization of visualization model in order to achieve an optimal user experience. We will give a summary of our grammars’ restrictions and will provide some ideas for possible future work that could improve the overall user experience. The proposed trees can function by themselves, or they can be implemented in digital repositories of libraries and different types of citation databases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学术参考树
本文提出了一种基于web环境的文献计量数据分析和可视化模型,并对其进行了说明和实现。我们使用NLP语法对学术出版物中使用的参考文献进行模式识别。提取的信息用于通过树状结构可视化作者以自我为中心的数据。这项工作的最终目标是使用以自我为中心的树来比较两个作者,并根据森林的属性建立不同树的网络或森林。我们偶然发现了许多不同的问题,从引用样式结构的异常到为了实现最佳用户体验而优化的可视化模型。我们将总结我们的语法限制,并为未来可能改善整体用户体验的工作提供一些想法。所提出的树可以独立运行,也可以在图书馆的数字存储库和不同类型的引文数据库中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
18
审稿时长
14 weeks
期刊最新文献
Digitisation of films and selection of films for digitisation from the perspective of users Metodologija strukture izrade životopisa te kriterija odabira osoba za upis u mrežni biografski leksikon How public libraries deliver value online Tržište elektroničkih knjiga u Republici Hrvatskoj - pregled snaga, slabosti, prilika i prijetnji s naznakama budućeg razvoja Public Libraries as Agonistic Spaces: At the Crossroads of Librarianship and Contemporary Artistic Practices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1