{"title":"Factor-augmented QVAR models: an observation-driven approach","authors":"Willy Alanya-Beltran","doi":"10.1017/s1365100523000330","DOIUrl":null,"url":null,"abstract":"\n I develop and study a factor-augmented quasi-vector autoregressive (FAQVAR) model for economic policy analysis in tumultuous times. An observation-driven framework that exploits the information from the score of the model allows a maximum likelihood estimation. This multivariate FAQVAR model, which assumes a Student t error distribution, is robust to atypical observations such as the global financial crisis and the recent pandemic. The model outperforms the FAVAR moving average model because of the assumed heavy tails that capture the COVID-19 atypical data and other turbulent episodes. An empirical application to the U.S. economy assessing its monetary policy reveals that estimates and impulse responses are stable when considering the sample before and during COVID-19.","PeriodicalId":18078,"journal":{"name":"Macroeconomic Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomic Dynamics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s1365100523000330","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
I develop and study a factor-augmented quasi-vector autoregressive (FAQVAR) model for economic policy analysis in tumultuous times. An observation-driven framework that exploits the information from the score of the model allows a maximum likelihood estimation. This multivariate FAQVAR model, which assumes a Student t error distribution, is robust to atypical observations such as the global financial crisis and the recent pandemic. The model outperforms the FAVAR moving average model because of the assumed heavy tails that capture the COVID-19 atypical data and other turbulent episodes. An empirical application to the U.S. economy assessing its monetary policy reveals that estimates and impulse responses are stable when considering the sample before and during COVID-19.
期刊介绍:
Macroeconomic Dynamics publishes theoretical, empirical or quantitative research of the highest standard. Papers are welcomed from all areas of macroeconomics and from all parts of the world. Major advances in macroeconomics without immediate policy applications will also be accepted, if they show potential for application in the future. Occasional book reviews, announcements, conference proceedings, special issues, interviews, dialogues, and surveys are also published.