Theoretical kinetics investigations of the reaction HO + SO ↔ H + SO2 on an accurate full-dimensional potential energy surface

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL International Journal of Chemical Kinetics Pub Date : 2023-04-06 DOI:10.1002/kin.21645
Xiaoshan Huang, Jie Qin, Jianxun Zhang, Jun Li
{"title":"Theoretical kinetics investigations of the reaction HO + SO ↔ H + SO2 on an accurate full-dimensional potential energy surface","authors":"Xiaoshan Huang,&nbsp;Jie Qin,&nbsp;Jianxun Zhang,&nbsp;Jun Li","doi":"10.1002/kin.21645","DOIUrl":null,"url":null,"abstract":"<p>The reaction HO + SO → H + SO<sub>2</sub> (R<sub>t</sub>) and its reverse (R<sub>-t</sub>) play an important role in environment and the combustion of sulfur-containing fuels. However, their kinetics is of high uncertainty as its reaction profile is complicated with multiple deep complexes and channels. In this work, the kinetics and mechanisms of R<sub>t</sub> and R<sub>-t</sub> are studied comprehensively based on a newly developed full-dimensional accurate potential energy surface (PES) with the aid of machine learning. This highly accurate PES is interfaced with the software Gaussian. Then reliable information, including the energy, structures, and vibrational frequencies of the stationary points, as well as the minimum energy path and variational analysis can be efficiently determined. The variational transition state theory (VTST) and Rice−Ramsperger−Kassel−Marcus (RRKM) theory are employed to obtain the rate coefficients of each elementary reaction. The temperature- and pressure-dependent rate coefficients of R<sub>t</sub> are derived by the RRKM-based master equation with hindered rotor and free rotor model considered. In addition, the effect of isotope substitution for the hydrogen is investigated on the reaction kinetics. Meanwhile, the quasi-classical trajectory (QCT) calculation is performed on the PES-2020 to obtain the temperature-dependent reaction kinetics.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"55 8","pages":"415-430"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21645","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The reaction HO + SO → H + SO2 (Rt) and its reverse (R-t) play an important role in environment and the combustion of sulfur-containing fuels. However, their kinetics is of high uncertainty as its reaction profile is complicated with multiple deep complexes and channels. In this work, the kinetics and mechanisms of Rt and R-t are studied comprehensively based on a newly developed full-dimensional accurate potential energy surface (PES) with the aid of machine learning. This highly accurate PES is interfaced with the software Gaussian. Then reliable information, including the energy, structures, and vibrational frequencies of the stationary points, as well as the minimum energy path and variational analysis can be efficiently determined. The variational transition state theory (VTST) and Rice−Ramsperger−Kassel−Marcus (RRKM) theory are employed to obtain the rate coefficients of each elementary reaction. The temperature- and pressure-dependent rate coefficients of Rt are derived by the RRKM-based master equation with hindered rotor and free rotor model considered. In addition, the effect of isotope substitution for the hydrogen is investigated on the reaction kinetics. Meanwhile, the quasi-classical trajectory (QCT) calculation is performed on the PES-2020 to obtain the temperature-dependent reaction kinetics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精确全维势能表面上HO + SO↔H + so2反应的理论动力学研究
HO + SO→H + SO2 (Rt)及其逆反应(R-t)在环境和含硫燃料的燃烧中起着重要作用。然而,由于其反应谱复杂,有多个深层配合物和通道,其动力学具有很大的不确定性。本文基于新开发的全维精确势能面(PES),借助机器学习技术,对Rt和R-t的动力学和机理进行了全面研究。这种高精度的PES与高斯软件接口。然后,可以有效地确定平稳点的能量、结构、振动频率等可靠信息,以及最小能量路径和变分分析。采用变分跃迁态理论(VTST)和Rice - Ramsperger - Kassel - Marcus (RRKM)理论计算了各基本反应的速率系数。在考虑阻碍转子和自由转子模型的情况下,利用基于rrkm的主方程推导了Rt的温度和压力相关速率系数。此外,还研究了同位素取代氢对反应动力学的影响。同时,对PES-2020进行了准经典轨迹(QCT)计算,获得了温度依赖性反应动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
期刊最新文献
Issue Information Issue Information Force training neural network potential energy surface models Issue Information Folic acid as a green inhibitor for corrosion protection of Q235 carbon steel in 3.5 wt% NaCl solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1