Model for Energy Consumption and Costs of Bioethanol production from Wastepaper

Vikas Sharma, Raisa Abbas, J. R. Sodré, S. M. Ayad, C. Belchior
{"title":"Model for Energy Consumption and Costs of Bioethanol production from Wastepaper","authors":"Vikas Sharma, Raisa Abbas, J. R. Sodré, S. M. Ayad, C. Belchior","doi":"10.13044/j.sdewes.d10.0431","DOIUrl":null,"url":null,"abstract":"This work investigates bioethanol production from wastepaper via acid and enzymatic hydrolysis, intending to attain the highest possible yield, including an evaluation of energy consumption of the production processes and costs involved. A mathematical model was designed using MATLAB software, in which pre-calculated chronological stages have been specified with the parameters that significantly affect the bioethanol yield, including type and number of consumables, reaction temperature and residence time. The independent variables have been decided based on recommended values found in the literature and are provided as suggestions. A user is also given the choice to input the values manually. Mass and energy balance are carried out for each process stage of bioethanol production to calculate the energy consumption of the chemical reactions. The model also calculates the bioethanol yield per 100 g of lignocellulosic biomass and the related costs. A comparison between enzymatic and acid hydrolysis bioethanol is presented by a line chart on the software interface, helping the understanding of the effects of the independent variable parameters. As a result, the optimal conditions to produce the highest bioethanol yield and therefore increase the efficiency of a process are obtained. The model is expected to aid in reducing laboratory-based experiments, saving time, human errors, costly microorganisms, and other consumables.","PeriodicalId":46202,"journal":{"name":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13044/j.sdewes.d10.0431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

This work investigates bioethanol production from wastepaper via acid and enzymatic hydrolysis, intending to attain the highest possible yield, including an evaluation of energy consumption of the production processes and costs involved. A mathematical model was designed using MATLAB software, in which pre-calculated chronological stages have been specified with the parameters that significantly affect the bioethanol yield, including type and number of consumables, reaction temperature and residence time. The independent variables have been decided based on recommended values found in the literature and are provided as suggestions. A user is also given the choice to input the values manually. Mass and energy balance are carried out for each process stage of bioethanol production to calculate the energy consumption of the chemical reactions. The model also calculates the bioethanol yield per 100 g of lignocellulosic biomass and the related costs. A comparison between enzymatic and acid hydrolysis bioethanol is presented by a line chart on the software interface, helping the understanding of the effects of the independent variable parameters. As a result, the optimal conditions to produce the highest bioethanol yield and therefore increase the efficiency of a process are obtained. The model is expected to aid in reducing laboratory-based experiments, saving time, human errors, costly microorganisms, and other consumables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
废纸生产生物乙醇的能耗和成本模型
这项工作研究了通过酸和酶水解从废纸中生产生物乙醇,旨在获得尽可能高的产量,包括评估生产过程的能耗和相关成本。使用MATLAB软件设计了一个数学模型,其中预先计算的时间阶段已经指定了显著影响生物乙醇产量的参数,包括耗材的类型和数量、反应温度和停留时间。自变量是根据文献中的推荐值确定的,并作为建议提供。用户还可以选择手动输入值。对生物乙醇生产的每个工艺阶段进行质量和能量平衡,以计算化学反应的能耗。该模型还计算了每100g木质纤维素生物质的生物乙醇产量和相关成本。软件界面上的折线图显示了酶水解和酸水解生物乙醇之间的比较,有助于理解自变量参数的影响。结果,获得了生产最高生物乙醇产量并因此提高工艺效率的最佳条件。该模型有望帮助减少实验室实验,节省时间、人为错误、昂贵的微生物和其他消耗品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
9.50%
发文量
59
审稿时长
20 weeks
期刊介绍: The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations.
期刊最新文献
High-value chemicals production via eco-industrial park: heat integration, safety, and environmental analysis Sewage sludge co-digestion with mango peel liquor: impact of hydraulic retention time on methane yield and bioenergy recovery Cinemetrics of environmental educational video materials according to the analysis of the use of color and frame length Ecological and Economic Feasibility of Inductive Heating for Sustainable Press Hardening Processes Spatiotemporal Analysis of the Impacts of Climate Change on UAE Mangroves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1