Towards the synthesis of spectral imaging and machine learning-based approaches for non-invasive phenotyping of plants.

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2023-09-04 eCollection Date: 2023-10-01 DOI:10.1007/s12551-023-01125-x
Alexei Solovchenko, Boris Shurygin, Dmitry A Nesterov, Dmitry V Sorokin
{"title":"Towards the synthesis of spectral imaging and machine learning-based approaches for non-invasive phenotyping of plants.","authors":"Alexei Solovchenko, Boris Shurygin, Dmitry A Nesterov, Dmitry V Sorokin","doi":"10.1007/s12551-023-01125-x","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput phenotyping is now central to the progress of plant sciences, accelerated breeding, and precision farming. The power of phenotyping comes from the automated, rapid, non-invasive collection of large datasets describing plant objects. In this context, the goal of extracting relevant information from different kinds of images is of paramount importance. We review both the spectral and machine learning-based approaches to imaging of plants for the purpose of their phenotyping. The advantages and drawbacks of both approaches will be discussed with a focus on the monitoring of plants. We argue that an emerging approach combining the strengths of the spectral and the machine learning-based approaches will remain a promising direction in plant phenotyping in the nearest future.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":" ","pages":"939-946"},"PeriodicalIF":5.5000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01125-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput phenotyping is now central to the progress of plant sciences, accelerated breeding, and precision farming. The power of phenotyping comes from the automated, rapid, non-invasive collection of large datasets describing plant objects. In this context, the goal of extracting relevant information from different kinds of images is of paramount importance. We review both the spectral and machine learning-based approaches to imaging of plants for the purpose of their phenotyping. The advantages and drawbacks of both approaches will be discussed with a focus on the monitoring of plants. We argue that an emerging approach combining the strengths of the spectral and the machine learning-based approaches will remain a promising direction in plant phenotyping in the nearest future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光谱成像和机器学习的植物非侵入性表型综合方法
高通量表型分析现在是植物科学进步、加速育种和精准农业的核心。表型分析的力量来自于描述植物对象的大型数据集的自动、快速、无创收集。在这种情况下,从不同类型的图像中提取相关信息的目标至关重要。我们回顾了光谱和基于机器学习的植物成像方法,以确定它们的表型。这两种方法的优点和缺点将重点讨论植物的监测。我们认为,结合光谱和基于机器学习的方法的优势的新兴方法在不久的将来仍将是植物表型分析的一个有前途的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Non-Thermal Pulsed Plasma Synthesis of Carbon Nanomaterials from Hydrocarbons: Morphology and Energy Storage Locally Resolved Thermally Induced Degradation of PM6:Y6-Based Organic Solar Cells Suppressing Dendrites with Garnet–Polyimide Nanofiber Separators for Durable Anode-Free Lithium Metal Batteries Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1