Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Earthquakes and Structures Pub Date : 2020-06-01 DOI:10.12989/EAS.2020.18.6.667
Behroozeh Sharifi, G. Nouri, A. Ghanbari
{"title":"Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses","authors":"Behroozeh Sharifi, G. Nouri, A. Ghanbari","doi":"10.12989/EAS.2020.18.6.667","DOIUrl":null,"url":null,"abstract":"The current study compares the effect of structure-soil-structure interaction (SSSI) on the dynamic responses of adjacent buildings and isolated structures including soil-structure interaction (SSI) with the responses of fixed-base structures. Structural responses such as the relative acceleration, displacement, drift and shear force were considered under earthquake ground motion excitation. For this purpose, 5-, 10- and 15-story structures with 2-bay moment resisting frames resting on shallow foundations were modeled as a group of buildings in soft soil media. Viscous lateral boundaries and interface elements were applied to the soil model to simulate semi-infinite soil media, frictional contact and probable slip under seismic excitation. The direct method was employed for fully nonlinear time-history dynamic analysis in OpenSees using 3D finite element soil-structure models with different building positions. The results showed that the responses of the grouped structures were strongly influenced by the adjacent structures. The responses were as much as 4 times greater for drift and 2.3 times greater for shear force than the responses of fixed-base models.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2020.18.6.667","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3

Abstract

The current study compares the effect of structure-soil-structure interaction (SSSI) on the dynamic responses of adjacent buildings and isolated structures including soil-structure interaction (SSI) with the responses of fixed-base structures. Structural responses such as the relative acceleration, displacement, drift and shear force were considered under earthquake ground motion excitation. For this purpose, 5-, 10- and 15-story structures with 2-bay moment resisting frames resting on shallow foundations were modeled as a group of buildings in soft soil media. Viscous lateral boundaries and interface elements were applied to the soil model to simulate semi-infinite soil media, frictional contact and probable slip under seismic excitation. The direct method was employed for fully nonlinear time-history dynamic analysis in OpenSees using 3D finite element soil-structure models with different building positions. The results showed that the responses of the grouped structures were strongly influenced by the adjacent structures. The responses were as much as 4 times greater for drift and 2.3 times greater for shear force than the responses of fixed-base models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三维非线性分析的建筑群结构-土-结构相互作用
本研究比较了结构-土-结构相互作用(SSSI)对相邻建筑物和隔震结构动力响应的影响,包括土-结构交互作用(SSI)和固定基础结构的响应。考虑了地震动激励下结构的相对加速度、位移、位移和剪力等响应。为此,将浅基础上的5层、10层和15层结构(具有2向抗弯框架)建模为软土介质中的一组建筑。将粘性侧向边界和界面单元应用于土壤模型,模拟地震激励下的半无限大土壤介质、摩擦接触和可能滑动。采用直接法在OpenSees中使用不同建筑位置的三维有限元土结构模型进行全非线性时程动力分析。结果表明,分组结构的响应受到相邻结构的强烈影响。与固定基础模型的响应相比,漂移的响应高达4倍,剪切力的响应高出2.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquakes and Structures
Earthquakes and Structures ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
2.90
自引率
20.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response
期刊最新文献
Seismic behaviour of dams to near fault and far fault ground motions: A state of the art review Mathematical model and results for seismicresponses of a nonlinear isolation system Base-isolated steel structure with spring limitersunder near-fault earthquakes: Experiment Seismic performance assessment of code-conforming precast reinforced concrete frames in China Seismic Site Classification from HVSR Data using the Rayleigh wave ellipticity inversion: A case study in Singapore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1