A new test for non-linear hypotheses under distributional and local parametric misspecification

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2022-11-29 DOI:10.1515/snde-2022-0043
A. Bera, Osman Doğan, Suleyman Taspinar
{"title":"A new test for non-linear hypotheses under distributional and local parametric misspecification","authors":"A. Bera, Osman Doğan, Suleyman Taspinar","doi":"10.1515/snde-2022-0043","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we develop a new version of Rao’s score (RS) statistic for testing a non-linear hypothesis under both distributional and local parametric misspecification. Our suggested test statistic is constructed through a size correction approach so that it becomes robust to both types of misspecification. We establish the asymptotic properties of the robust test statistic and provide several examples to illustrate its implementation. We also investigate the finite sample properties of our test along with some other well-known tests through simulations. Our simulation results demonstrate that the new test statistic has good finite sample properties in terms of empirical size and power.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2022-0043","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we develop a new version of Rao’s score (RS) statistic for testing a non-linear hypothesis under both distributional and local parametric misspecification. Our suggested test statistic is constructed through a size correction approach so that it becomes robust to both types of misspecification. We establish the asymptotic properties of the robust test statistic and provide several examples to illustrate its implementation. We also investigate the finite sample properties of our test along with some other well-known tests through simulations. Our simulation results demonstrate that the new test statistic has good finite sample properties in terms of empirical size and power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布和局部参数错误指定下非线性假设的一个新检验
摘要在本文中,我们开发了一个新版本的Rao分数(RS)统计量,用于在分布和局部参数错误指定下检验非线性假设。我们建议的测试统计数据是通过大小校正方法构建的,因此它对两种类型的错误指定都具有鲁棒性。我们建立了鲁棒检验统计量的渐近性质,并提供了几个例子来说明它的实现。我们还通过模拟研究了我们的测试以及其他一些众所周知的测试的有限样本特性。我们的模拟结果表明,新的检验统计量在经验大小和幂方面具有良好的有限样本性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1