Use of Finite Element Method for Free Convection of Nanofluids between a Rectangular Enclosure and a Sinusoidal Cylinder Using Buongiorno’s Two-Phase Model
{"title":"Use of Finite Element Method for Free Convection of Nanofluids between a Rectangular Enclosure and a Sinusoidal Cylinder Using Buongiorno’s Two-Phase Model","authors":"A. Alhashash, H. Saleh","doi":"10.1155/2023/8426825","DOIUrl":null,"url":null,"abstract":"In this study, the free convection of nanofluids between a rectangular enclosure and a sinusoidal cylinder is numerically analyzed using the finite element method (FEM). Two-phase Buongiorno’s formulation was used to model the fluid layer, and Brinkman-Forchheimer equation was used to formulate the porous layer. The enclosure has a low temperature, while the cylinder is maintained at a high temperature. The governing equations are expressed in PDEs and converted into weak formulations (Galerkin FEM). In numerical simulations, the average concentration, the amplitude of undulated cylinder, the number of undulated, and the Rayleigh number are investigated. It is observed that the homogeneous nanofluid model could be valid for low heating intensity with higher waviness frequency and/or higher amplitude. The higher the alumina concentration, the higher the heat transfer rate. The heat transfer rate can be boosted by up to 13% by suspending 1% alumina particles. The heat transfer enhancement decreases with increasing the amplitude and/or increasing the waviness number.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/8426825","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the free convection of nanofluids between a rectangular enclosure and a sinusoidal cylinder is numerically analyzed using the finite element method (FEM). Two-phase Buongiorno’s formulation was used to model the fluid layer, and Brinkman-Forchheimer equation was used to formulate the porous layer. The enclosure has a low temperature, while the cylinder is maintained at a high temperature. The governing equations are expressed in PDEs and converted into weak formulations (Galerkin FEM). In numerical simulations, the average concentration, the amplitude of undulated cylinder, the number of undulated, and the Rayleigh number are investigated. It is observed that the homogeneous nanofluid model could be valid for low heating intensity with higher waviness frequency and/or higher amplitude. The higher the alumina concentration, the higher the heat transfer rate. The heat transfer rate can be boosted by up to 13% by suspending 1% alumina particles. The heat transfer enhancement decreases with increasing the amplitude and/or increasing the waviness number.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.