Corrosion Inhibitive Potentials Of (E)-5-((4-Benzoylphenyl)Diazenyl)-2-Hydroxybenzoic Acid On Mild Steel Surface In 0.5 M HCl- Experimental And DFT Calculations

J. Amoko, O. Akinyele, O. Oyeneyin, Dare Olayanju
{"title":"Corrosion Inhibitive Potentials Of (E)-5-((4-Benzoylphenyl)Diazenyl)-2-Hydroxybenzoic Acid On Mild Steel Surface In 0.5 M HCl- Experimental And DFT Calculations","authors":"J. Amoko, O. Akinyele, O. Oyeneyin, Dare Olayanju","doi":"10.18596/JOTCSA.821488","DOIUrl":null,"url":null,"abstract":"One of the ways of reducing metal corrosion and its devastating effects is by using organic corrosion inhibitors. This is because of the π-conjugation in their moieties, their ability to donate electrons to the metal’s vacant d-orbitals, and their low lying LUMO orbitals for accepting electrons as well from the metal, all these improve their adsorption on the metal surface. (E)-5-((4-benzoylphenyl)diazenyl)-2-hydroxybenzoic acid (AD4) was synthesized via the coupling reaction of p-aminobenzonephenone and Salicylic acid, characterized via FTIR, UV/Vis, 1H-NMR, and 13C-NMR spectroscopy. The melting point of AD4 is 103oC–106oC indicating that it is thermally stable and pure. Gravimetric and potentiodynamic polarization techniques were employed to obtain the corrosion rates (Cr) and percentage inhibition efficiency (%IE) at different concentrations of the inhibitor and at different temperatures. The thermodynamic parameters like Enthalpy, ∆Hoads, Entropy, ∆Soads and free energy of adsorption (∆Gads) of Adsorption were calculated. The Langmuir adsorption isotherm was used to describe the adsorption of AD4 molecules on mild steel. Quantum mechanical calculations were employed to calculate the electronic properties and global reactivity descriptors of AD4. The theoretical results are broadly consistent with experimental results. From the results obtained AD4 could be used as a corrosion inhibition agent in the oil and gas industries.","PeriodicalId":17402,"journal":{"name":"Journal of the Turkish Chemical Society, Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society, Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/JOTCSA.821488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 9

Abstract

One of the ways of reducing metal corrosion and its devastating effects is by using organic corrosion inhibitors. This is because of the π-conjugation in their moieties, their ability to donate electrons to the metal’s vacant d-orbitals, and their low lying LUMO orbitals for accepting electrons as well from the metal, all these improve their adsorption on the metal surface. (E)-5-((4-benzoylphenyl)diazenyl)-2-hydroxybenzoic acid (AD4) was synthesized via the coupling reaction of p-aminobenzonephenone and Salicylic acid, characterized via FTIR, UV/Vis, 1H-NMR, and 13C-NMR spectroscopy. The melting point of AD4 is 103oC–106oC indicating that it is thermally stable and pure. Gravimetric and potentiodynamic polarization techniques were employed to obtain the corrosion rates (Cr) and percentage inhibition efficiency (%IE) at different concentrations of the inhibitor and at different temperatures. The thermodynamic parameters like Enthalpy, ∆Hoads, Entropy, ∆Soads and free energy of adsorption (∆Gads) of Adsorption were calculated. The Langmuir adsorption isotherm was used to describe the adsorption of AD4 molecules on mild steel. Quantum mechanical calculations were employed to calculate the electronic properties and global reactivity descriptors of AD4. The theoretical results are broadly consistent with experimental results. From the results obtained AD4 could be used as a corrosion inhibition agent in the oil and gas industries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(E)-5-((4-苯甲酰基苯基)二氮基)-2-羟基苯甲酸在0.5M盐酸中对软钢表面的缓蚀电位-实验和DFT计算
减少金属腐蚀及其破坏性影响的方法之一是使用有机缓蚀剂。这是因为它们部分的π-共轭,它们向金属的空位d轨道提供电子的能力,以及它们接受来自金属的电子的低位LUMO轨道,所有这些都改善了它们在金属表面的吸附。(E) 通过对氨基苯并霞石酮与水杨酸的偶联反应合成了-5-(4-苯甲酰基苯基)二氮烯基)-2-羟基苯甲酸(AD4),并用FTIR、UV/Vis、1H-NMR和13C-NMR对其进行了表征。AD4的熔点为103oC–106oC,表明其热稳定且纯净。采用重量法和动电位极化法测定了不同浓度缓蚀剂和不同温度下的腐蚀速率(Cr)和缓蚀率(%IE)。计算了吸附的焓、∆Hoads、熵、∆Soads和吸附自由能(∆Gads)等热力学参数。用Langmuir吸附等温线描述了AD4分子在软钢上的吸附。采用量子力学计算方法计算了AD4的电子性质和全局反应性描述符。理论结果与实验结果基本一致。从所获得的结果来看,AD4可以用作石油和天然气工业中的缓蚀剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
81
审稿时长
5 weeks
期刊最新文献
Investigating the Effects of Fluorine Substituents on Organic Dyes in Dye-Sensitized Solar Cells Creating Nano-Sulfur from Sulfur Wastes in Mishraq Synthesis of Manganese(II), Iron(III), and Vanadium(IV) Complexes with New Schiff Bases and their Spectroscopic and Thermal Studies and Evaluation of their Antimicrobial Activity Preparation of PLGA-PEG/Hydroxyapatite Composites via Simple Methodology of Film Formation and Assessment of Their Structural, Thermal, and Biological Features Effect of AOT/Heptane Reverse Micelles on Oxidation of Ferroin by Metaperiodate: Kinetic and Mechanistic Aspects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1