Thermoelastic Memory-dependent Responses to an Infinite Medium with a Cylindrical Hole and Temperature-dependent Properties

Q4 Chemical Engineering Applied and Computational Mechanics Pub Date : 2021-04-01 DOI:10.22055/JACM.2021.36048.2784
E. Awwad, A. Abouelregal, A. Hassan
{"title":"Thermoelastic Memory-dependent Responses to an Infinite Medium with a Cylindrical Hole and Temperature-dependent Properties","authors":"E. Awwad, A. Abouelregal, A. Hassan","doi":"10.22055/JACM.2021.36048.2784","DOIUrl":null,"url":null,"abstract":"The present research discusses a generalized thermoelastic model with variable thermal material properties and derivatives based on memory. Based on this new model, an infinitely long homogeneous, isotropic elastic body with a cylindrical hole is analyzed for thermal behavior analysis. The governing equations are deduced by the application of the principle of memory-dependent derivatives and the generalized law on heat conduction. In a numerical form, the governing differential equations are solved utilizing the Laplace transform technique. Numerical calculations are shown in graphs to explain the effects of the thermal variable material properties and memory dependent derivatives. In addition, the response of the cylindrical hole is studied through the effects of many parameters such as time delay, the kernel function and boundary conditions. The results obtained with those from previous literature are finally verified.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"7 1","pages":"870-882"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.36048.2784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

The present research discusses a generalized thermoelastic model with variable thermal material properties and derivatives based on memory. Based on this new model, an infinitely long homogeneous, isotropic elastic body with a cylindrical hole is analyzed for thermal behavior analysis. The governing equations are deduced by the application of the principle of memory-dependent derivatives and the generalized law on heat conduction. In a numerical form, the governing differential equations are solved utilizing the Laplace transform technique. Numerical calculations are shown in graphs to explain the effects of the thermal variable material properties and memory dependent derivatives. In addition, the response of the cylindrical hole is studied through the effects of many parameters such as time delay, the kernel function and boundary conditions. The results obtained with those from previous literature are finally verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有圆柱孔的无限介质的热弹性记忆响应和温度相关性质
本研究讨论了一种基于记忆的变热材料性质及其衍生物的广义热弹性模型。在此基础上,对具有圆柱孔的无限长均匀各向同性弹性体进行了热行为分析。应用记忆导数原理和热传导广义定律推导了控制方程。在数值形式下,利用拉普拉斯变换技术求解控制微分方程。数值计算显示在图表中,以解释热变量材料性能和记忆相关导数的影响。此外,通过时滞、核函数和边界条件等参数的影响,研究了圆柱孔的响应。最后对所得结果与前人文献的结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
期刊最新文献
Compressor cascade correlations modelling at design points using artificial neural networks Mesh convergence error estimations for compressible inviscid fluid flow over airfoil cascades using multiblock structured mesh Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability Numerical simulations of aeroelastic instabilities in a turbine-blade cascade by a modified Van der Pol model at running excitation Higher order computational model considering the effects of transverse normal strain and 2-parameter elastic foundation for the bending of laminated panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1