Controlled synthesis of α-Al2O3 supported Ag particles with tuning catalytic performance

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Experimental Nanoscience Pub Date : 2021-12-20 DOI:10.1080/17458080.2021.2016713
Yang Nan, Zhuoran Deng, Zhao Xi, Dengfeng Wu
{"title":"Controlled synthesis of α-Al2O3 supported Ag particles with tuning catalytic performance","authors":"Yang Nan, Zhuoran Deng, Zhao Xi, Dengfeng Wu","doi":"10.1080/17458080.2021.2016713","DOIUrl":null,"url":null,"abstract":"Abstract Herein, α-Al2O3 supported Ag particles with controllable size distribution are prepared successfully by tuning of the calcination conditions through an impregnation method. The size of Ag particles could be adjusted by changing the calcination time and temperature. The catalyst samples were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and other characterization methods under different calcination conditions, and the performance differences of their catalytic reduction of p-nitrophenol (4-NP) were investigated by UV-Vis spectroscopy. The results show that the Ag particles with increased particle size can be obtained on the surface of α-Al2O3 support by increasing the calcination time or calcination temperature. The catalytic performance of the samples obtained by increasing the calcination time decreased, while the catalytic performance of the samples obtained by increasing the calcination temperature increased. This may be due to the interaction between Ag particles and the support, which changes the valence state of Ag species. Also the particle size effect acts on the catalyst and affects its catalytic performance together with the change of valence.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"17 1","pages":"1 - 13"},"PeriodicalIF":2.6000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17458080.2021.2016713","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Herein, α-Al2O3 supported Ag particles with controllable size distribution are prepared successfully by tuning of the calcination conditions through an impregnation method. The size of Ag particles could be adjusted by changing the calcination time and temperature. The catalyst samples were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and other characterization methods under different calcination conditions, and the performance differences of their catalytic reduction of p-nitrophenol (4-NP) were investigated by UV-Vis spectroscopy. The results show that the Ag particles with increased particle size can be obtained on the surface of α-Al2O3 support by increasing the calcination time or calcination temperature. The catalytic performance of the samples obtained by increasing the calcination time decreased, while the catalytic performance of the samples obtained by increasing the calcination temperature increased. This may be due to the interaction between Ag particles and the support, which changes the valence state of Ag species. Also the particle size effect acts on the catalyst and affects its catalytic performance together with the change of valence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
α-Al2O3负载银颗粒的可控合成及其调控催化性能
摘要通过浸渍法制备了粒径分布可控的α-Al2O3负载银颗粒。通过改变煅烧时间和温度可以调节银颗粒的大小。采用扫描电镜(SEM)、x射线衍射(XRD)、x射线光电子能谱(XPS)等表征方法对催化剂样品在不同焙烧条件下进行了分析,并利用紫外可见光谱研究了它们催化还原对硝基苯酚(4-NP)的性能差异。结果表明:随着煅烧时间的延长或煅烧温度的升高,α-Al2O3载体表面均可获得粒径增大的Ag颗粒;增加煅烧时间得到的样品的催化性能降低,而增加煅烧温度得到的样品的催化性能提高。这可能是由于银粒子与载体之间的相互作用改变了银的价态。此外,粒径效应还与价态的变化一起影响催化剂的催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Nanoscience
Journal of Experimental Nanoscience 工程技术-材料科学:综合
CiteScore
4.10
自引率
25.00%
发文量
39
审稿时长
6.5 months
期刊介绍: Journal of Experimental Nanoscience, an international and multidisciplinary journal, provides a showcase for advances in the experimental sciences underlying nanotechnology and nanomaterials. The journal exists to bring together the most significant papers making original contributions to nanoscience in a range of fields including biology and biochemistry, physics, chemistry, chemical, electrical and mechanical engineering, materials, pharmaceuticals and medicine. The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
期刊最新文献
Inhibition of restenosis after balloon injury in rabbit vessels by integrin αvβ3-targeted 10058-F4 nanoparticles Enhancing structural and optical properties of titanium dioxide nanoparticles (TiO2 NPs) incorporating with indium tin oxide nanoparticles (ITO NPs): effects of annealing temperature Alginate-wrapped NiO-ZnO nanocomposites-based catalysts for water treatment Evolution of the precursor structure during the preparation of the nanopowders with perovskite-type LnLn’O3 (Ln, Ln’ = REE) complex oxide phase in the La2O3-Lu2O3-Yb2O3 system Statement of Retraction: Image processing algorithm for mechanical properties testing of high temperature materials based on time‐frequency analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1