The evolution of sanguivory in vampire bats: origins and convergences

IF 1 4区 生物学 Q3 ZOOLOGY Canadian Journal of Zoology Pub Date : 2023-03-13 DOI:10.1139/cjz-2022-0115
D. Riskin, G. Carter
{"title":"The evolution of sanguivory in vampire bats: origins and convergences","authors":"D. Riskin, G. Carter","doi":"10.1139/cjz-2022-0115","DOIUrl":null,"url":null,"abstract":"Blood-feeding (sanguivory) has evolved more than two dozen times among birds, fishes, insects, arachnids, molluscs, crustaceans, and annelids; however, among mammals, it is restricted to the vampire bats. Here, the authors revisit the question of how it evolved in that group. Evidence to date suggests that the ancestors of phyllostomids were insectivorous, and that carnivory, omnivory, and nectarivory evolved among phyllostomids after vampire bats diverged. Frugivory likely also evolved after vampire bats diverged, but the phylogeny is ambiguous on that point. However, vampire bats lack any genetic evidence of a frugivorous past, and the behavioural progression from frugivory to sanguivory is difficult to envision. Thus, the most parsimonious scenario is that sanguivory evolved in an insectivorous ancestor to vampire bats via ectoparasite-eating, wound-feeding, or some combination of the two—all feeding habits found among blood-feeding birds today. Comparing vampire bats with other sanguivores, the authors find several remarkable examples of convergence. Further, it was found that blood-feeding has been ca. 50 times more likely to evolve in a vertebrate lineage than in an invertebrate one. The authors hypothesize that this difference exists because vertebrates are more likely than invertebrates to have the biochemical necessities required to assimilate the components of vertebrate blood.","PeriodicalId":9484,"journal":{"name":"Canadian Journal of Zoology","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjz-2022-0115","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Blood-feeding (sanguivory) has evolved more than two dozen times among birds, fishes, insects, arachnids, molluscs, crustaceans, and annelids; however, among mammals, it is restricted to the vampire bats. Here, the authors revisit the question of how it evolved in that group. Evidence to date suggests that the ancestors of phyllostomids were insectivorous, and that carnivory, omnivory, and nectarivory evolved among phyllostomids after vampire bats diverged. Frugivory likely also evolved after vampire bats diverged, but the phylogeny is ambiguous on that point. However, vampire bats lack any genetic evidence of a frugivorous past, and the behavioural progression from frugivory to sanguivory is difficult to envision. Thus, the most parsimonious scenario is that sanguivory evolved in an insectivorous ancestor to vampire bats via ectoparasite-eating, wound-feeding, or some combination of the two—all feeding habits found among blood-feeding birds today. Comparing vampire bats with other sanguivores, the authors find several remarkable examples of convergence. Further, it was found that blood-feeding has been ca. 50 times more likely to evolve in a vertebrate lineage than in an invertebrate one. The authors hypothesize that this difference exists because vertebrates are more likely than invertebrates to have the biochemical necessities required to assimilate the components of vertebrate blood.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吸血蝙蝠血牙的进化:起源与趋同
鸟类、鱼类、昆虫、蛛形纲动物、软体动物、甲壳类动物和环节动物已经进化了二十多次血食性;然而,在哺乳动物中,它仅限于吸血蝙蝠。在这里,作者们重新审视了它是如何在这个群体中进化的问题。迄今为止的证据表明,叶口动物的祖先是食虫动物,在吸血蝙蝠分化后,食肉、杂食和蜜腺动物在叶口动物中进化而来。食果动物很可能也是在吸血蝙蝠分化后进化而来的,但在这一点上,系统发育尚不明确。然而,吸血蝙蝠缺乏任何关于食草历史的基因证据,从食草到桑吉沃里的行为发展也很难想象。因此,最简单的情况是,桑吉沃里是在吸血蝙蝠的食虫祖先中通过外寄生虫进食、伤口进食或两者的结合进化而来的——所有这些都是当今吸血鸟类的进食习惯。将吸血蝙蝠与其他桑吉沃动物进行比较,作者发现了几个显著的趋同例子。此外,研究发现,脊椎动物谱系进化的可能性是无脊椎动物谱系的50倍。作者假设这种差异的存在是因为脊椎动物比无脊椎动物更有可能具有同化脊椎动物血液成分所需的生化必需品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Journal of Zoology
Canadian Journal of Zoology 生物-动物学
CiteScore
2.40
自引率
0.00%
发文量
82
审稿时长
3 months
期刊介绍: Published since 1929, the Canadian Journal of Zoology is a monthly journal that reports on primary research contributed by respected international scientists in the broad field of zoology, including behaviour, biochemistry and physiology, developmental biology, ecology, genetics, morphology and ultrastructure, parasitology and pathology, and systematics and evolution. It also invites experts to submit review articles on topics of current interest.
期刊最新文献
Variation in body condition of moose calves in regions with contrasted winter conditions and tick loads Estimating the effects of roads on migration: a barren-ground caribou case study OVER-WINTER BODY MASS AND CONCEPTIONS OF WHITE-TAILED DEER IN CENTRAL TX SIGNALLING PATHWAY ASSOCIATED TO DISCHARGE OF CNIDOCYST INDUCED BY REDUCED GLUTATHIONE IN HYDRA PLAGIODESMICA (DIONI) Spatial patterns of anticoagulant rodenticides in three species of medium-sized carnivores in Pennsylvania
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1