{"title":"A high-efficient multi-deme genetic algorithm with better load-balance","authors":"Wang Jie, Yuan Jiangjun","doi":"10.1504/IJCSM.2018.10014228","DOIUrl":null,"url":null,"abstract":"Genetic algorithm is a very powerful search algorithm that fits for many complex situations. However, it is very time consuming, which limits its usage. Previous work which makes use of multi-core systems to parallelise it performs well and gains much attention. This paper introduces that the load-imbalance problem in parallel genetic algorithm will incur large overhead and will limit the performance. We propose two efficient mechanisms (postponed waiting and work stealing) to achieve fine-grained schedule to solve the problem. Compared with traditional multi-deme parallel genetic algorithm, our high-efficient multi-deme genetic algorithm (HMGA) can achieve an average speedup of 1.36.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"9 1","pages":"240-246"},"PeriodicalIF":0.5000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.10014228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Genetic algorithm is a very powerful search algorithm that fits for many complex situations. However, it is very time consuming, which limits its usage. Previous work which makes use of multi-core systems to parallelise it performs well and gains much attention. This paper introduces that the load-imbalance problem in parallel genetic algorithm will incur large overhead and will limit the performance. We propose two efficient mechanisms (postponed waiting and work stealing) to achieve fine-grained schedule to solve the problem. Compared with traditional multi-deme parallel genetic algorithm, our high-efficient multi-deme genetic algorithm (HMGA) can achieve an average speedup of 1.36.