A high-efficient multi-deme genetic algorithm with better load-balance

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY International Journal of Computing Science and Mathematics Pub Date : 2018-07-12 DOI:10.1504/IJCSM.2018.10014228
Wang Jie, Yuan Jiangjun
{"title":"A high-efficient multi-deme genetic algorithm with better load-balance","authors":"Wang Jie, Yuan Jiangjun","doi":"10.1504/IJCSM.2018.10014228","DOIUrl":null,"url":null,"abstract":"Genetic algorithm is a very powerful search algorithm that fits for many complex situations. However, it is very time consuming, which limits its usage. Previous work which makes use of multi-core systems to parallelise it performs well and gains much attention. This paper introduces that the load-imbalance problem in parallel genetic algorithm will incur large overhead and will limit the performance. We propose two efficient mechanisms (postponed waiting and work stealing) to achieve fine-grained schedule to solve the problem. Compared with traditional multi-deme parallel genetic algorithm, our high-efficient multi-deme genetic algorithm (HMGA) can achieve an average speedup of 1.36.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"9 1","pages":"240-246"},"PeriodicalIF":0.5000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.10014228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Genetic algorithm is a very powerful search algorithm that fits for many complex situations. However, it is very time consuming, which limits its usage. Previous work which makes use of multi-core systems to parallelise it performs well and gains much attention. This paper introduces that the load-imbalance problem in parallel genetic algorithm will incur large overhead and will limit the performance. We propose two efficient mechanisms (postponed waiting and work stealing) to achieve fine-grained schedule to solve the problem. Compared with traditional multi-deme parallel genetic algorithm, our high-efficient multi-deme genetic algorithm (HMGA) can achieve an average speedup of 1.36.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种具有较好负载平衡性的高效多deme遗传算法
遗传算法是一种非常强大的搜索算法,适用于许多复杂的情况。然而,它非常耗时,这限制了它的使用。以往利用多核系统对其进行并行化处理的工作表现良好,受到了广泛关注。本文介绍了并行遗传算法中的负载不平衡问题,该问题会产生较大的开销并限制算法的性能。我们提出了两种有效的机制(延迟等待和工作窃取)来实现细粒度调度来解决问题。与传统的多deme并行遗传算法相比,我们的高效多deme遗传算法(HMGA)可以实现1.36的平均加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
37
期刊最新文献
Application of hybrid genetic algorithm based on travelling salesman problem in rural tourism route planning Non-destructive Diagnosis of Knee Osteoarthritis Based on Sparse Coding of MRI Hierarchical neural network detection model based on deep context and attention mechanism Particle resolved direct numerical simulation of heat transfer in gas-solid flows Research on bilingual text similarity detection and analysis based on improved fragment merging algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1