Estimation of Parameters and Reliability Characteristics in Lindley Distribution Using Randomly Censored Data

Renu Garg, M. Dube, H. Krishna
{"title":"Estimation of Parameters and Reliability Characteristics in Lindley Distribution Using Randomly Censored Data","authors":"Renu Garg, M. Dube, H. Krishna","doi":"10.19139/soic-2310-5070-692","DOIUrl":null,"url":null,"abstract":"This article deals with the estimation of parameters and reliability characteristics of Lindley distribution underrandom censoring. Expected time on test based on randomly censored data is obtained. The maximum likelihood estimators of the unknown parameters and reliability characteristics are derived. The asymptotic, bootstrap p and bootstrap t confidence intervals of the parameters are constructed. The Bayes estimators of the parameters and reliability characteristics under squared error loss function using non-informative and gamma informative priors are obtained. For computing of Bayes estimates, Lindley approximation and MCMC methods are considered. Highest posterior density (HPD) credible intervals of the parameters are obtained using MCMC method. Various estimation procedures are compared using a Monte Carlo simulation study. Finally, a real data set is analyzed for illustration purposes.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"80-97"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This article deals with the estimation of parameters and reliability characteristics of Lindley distribution underrandom censoring. Expected time on test based on randomly censored data is obtained. The maximum likelihood estimators of the unknown parameters and reliability characteristics are derived. The asymptotic, bootstrap p and bootstrap t confidence intervals of the parameters are constructed. The Bayes estimators of the parameters and reliability characteristics under squared error loss function using non-informative and gamma informative priors are obtained. For computing of Bayes estimates, Lindley approximation and MCMC methods are considered. Highest posterior density (HPD) credible intervals of the parameters are obtained using MCMC method. Various estimation procedures are compared using a Monte Carlo simulation study. Finally, a real data set is analyzed for illustration purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机截尾数据的林德利分布参数和可靠性估计
本文讨论了在随机截尾条件下Lindley分布的参数估计和可靠性特性。获得了基于随机截尾数据的预期测试时间。推导了未知参数的最大似然估计量和可靠性特性。构造了参数的渐近、自举p和自举t置信区间。利用非信息先验和伽玛信息先验,得到了平方误差损失函数下参数和可靠性特性的贝叶斯估计。对于Bayes估计的计算,考虑了Lindley近似和MCMC方法。使用MCMC方法得到了参数的最高后验密度(HPD)可信区间。使用蒙特卡罗模拟研究比较了各种估计程序。最后,为了便于说明,对实际数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1