{"title":"Optimal Coding and the Origins of Zipfian Laws","authors":"R. Ferrer-i-Cancho, C. Bentz","doi":"10.1080/09296174.2020.1778387","DOIUrl":null,"url":null,"abstract":"ABSTRACT The problem of compression in standard information theory consists of assigning codes as short as possible to numbers. Here we consider the problem of optimal coding – under an arbitrary coding scheme – and show that it predicts Zipf’s law of abbreviation, namely a tendency in natural languages for more frequent words to be shorter. We apply this result to investigate optimal coding also under so-called non-singular coding, a scheme where unique segmentation is not warranted but codes stand for a distinct number. Optimal non-singular coding predicts that the length of a word should grow approximately as the logarithm of its frequency rank, which is again consistent with Zipf’s law of abbreviation. Optimal non-singular coding in combination with the maximum entropy principle also predicts Zipf’s rank-frequency distribution. Furthermore, our findings on optimal non-singular coding challenge common beliefs about random typing. It turns out that random typing is in fact an optimal coding process, in stark contrast with the common assumption that it is detached from cost cutting considerations. Finally, we discuss the implications of optimal coding for the construction of a compact theory of Zipfian laws more generally as well as other linguistic laws.","PeriodicalId":45514,"journal":{"name":"Journal of Quantitative Linguistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09296174.2020.1778387","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1080/09296174.2020.1778387","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 35
Abstract
ABSTRACT The problem of compression in standard information theory consists of assigning codes as short as possible to numbers. Here we consider the problem of optimal coding – under an arbitrary coding scheme – and show that it predicts Zipf’s law of abbreviation, namely a tendency in natural languages for more frequent words to be shorter. We apply this result to investigate optimal coding also under so-called non-singular coding, a scheme where unique segmentation is not warranted but codes stand for a distinct number. Optimal non-singular coding predicts that the length of a word should grow approximately as the logarithm of its frequency rank, which is again consistent with Zipf’s law of abbreviation. Optimal non-singular coding in combination with the maximum entropy principle also predicts Zipf’s rank-frequency distribution. Furthermore, our findings on optimal non-singular coding challenge common beliefs about random typing. It turns out that random typing is in fact an optimal coding process, in stark contrast with the common assumption that it is detached from cost cutting considerations. Finally, we discuss the implications of optimal coding for the construction of a compact theory of Zipfian laws more generally as well as other linguistic laws.
期刊介绍:
The Journal of Quantitative Linguistics is an international forum for the publication and discussion of research on the quantitative characteristics of language and text in an exact mathematical form. This approach, which is of growing interest, opens up important and exciting theoretical perspectives, as well as solutions for a wide range of practical problems such as machine learning or statistical parsing, by introducing into linguistics the methods and models of advanced scientific disciplines such as the natural sciences, economics, and psychology.