Experimental investigation of the combustion characteristics of Mahua oil biodiesel-diesel blend using a DI diesel engine modified with EGR and nozzle hole orifice diameter

IF 14.4 Q1 ENERGY & FUELS Biofuel Research Journal-BRJ Pub Date : 2018-09-01 DOI:10.18331/BRJ2018.5.3.6
M. V. Kumar, A. Babu, P. R. Kumar, S. Reddy
{"title":"Experimental investigation of the combustion characteristics of Mahua oil biodiesel-diesel blend using a DI diesel engine modified with EGR and nozzle hole orifice diameter","authors":"M. V. Kumar, A. Babu, P. R. Kumar, S. Reddy","doi":"10.18331/BRJ2018.5.3.6","DOIUrl":null,"url":null,"abstract":"Engine modification through reducing nozzle hole diameter (NHD) (i.e., from the base value of 0.28 to the modified value of 0.20 mm) has been shown as an effective strategy in improving engine performance, combustion, and emission parameters. However, it has also led to substantial increases in NOx emission as a major shortcoming. In light of that, the present study was aimed at overcoming this challenge through the application of a partially-cooled exhaust gas recirculation (EGR) system. More specifically, Mahua oil biodiesel-diesel blend (B20) and neat diesel were tested on a modified single cylinder diesel engine under five different engine loads (i.e., 2.46, 4.92, 7.38, 9.84, and 12.3 kg) and in the presence of varying EGR rates (i.e., 10, 20, and 30%). The results obtained revealed that the performance, combustion, and emission characteristics of the modified engine (3-hole nozzle with an orifice diameter of 0.20 mm) were improved for both neat diesel and B20 except in the case of NOx, in comparison with those of the conventional diesel engine (3-hole nozzle with an orifice diameter of 0.28 mm). The considerable increases in NOx emissions caused by the smaller orifice NHD could be successfully compensated for through the implementation of the partially-cooled EGR. Overall and based on the findings of the present study, the proposed engine modification in the presence of partially-cooled EGR rate of 10% could be recommended as efficient combustion conditions for 20% blend of Mahua oil biodiesel and diesel. However, further increments in the EGR rate and in particular at higher loads, adversely affected the performance and emission characteristics of the modified engine due to the recirculation of high amounts of unburnt soot, CO2, H2O, as well as of O2 deficiency.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/BRJ2018.5.3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 29

Abstract

Engine modification through reducing nozzle hole diameter (NHD) (i.e., from the base value of 0.28 to the modified value of 0.20 mm) has been shown as an effective strategy in improving engine performance, combustion, and emission parameters. However, it has also led to substantial increases in NOx emission as a major shortcoming. In light of that, the present study was aimed at overcoming this challenge through the application of a partially-cooled exhaust gas recirculation (EGR) system. More specifically, Mahua oil biodiesel-diesel blend (B20) and neat diesel were tested on a modified single cylinder diesel engine under five different engine loads (i.e., 2.46, 4.92, 7.38, 9.84, and 12.3 kg) and in the presence of varying EGR rates (i.e., 10, 20, and 30%). The results obtained revealed that the performance, combustion, and emission characteristics of the modified engine (3-hole nozzle with an orifice diameter of 0.20 mm) were improved for both neat diesel and B20 except in the case of NOx, in comparison with those of the conventional diesel engine (3-hole nozzle with an orifice diameter of 0.28 mm). The considerable increases in NOx emissions caused by the smaller orifice NHD could be successfully compensated for through the implementation of the partially-cooled EGR. Overall and based on the findings of the present study, the proposed engine modification in the presence of partially-cooled EGR rate of 10% could be recommended as efficient combustion conditions for 20% blend of Mahua oil biodiesel and diesel. However, further increments in the EGR rate and in particular at higher loads, adversely affected the performance and emission characteristics of the modified engine due to the recirculation of high amounts of unburnt soot, CO2, H2O, as well as of O2 deficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在喷口直径和EGR改性直喷柴油机上对麻花油生物柴油-柴油混合燃料的燃烧特性进行了实验研究
通过减小喷嘴孔径(NHD)(即,从0.28的基本值到0.20mm的修正值)来改进发动机已被证明是改善发动机性能、燃烧和排放参数的有效策略。然而,它也导致NOx排放量的大幅增加,这是一个主要缺点。有鉴于此,本研究旨在通过应用部分冷却的废气再循环(EGR)系统来克服这一挑战。更具体地说,在五种不同的发动机负荷(即2.46、4.92、7.38、9.84和12.3kg)和不同EGR率(即10%、20%和30%)下,在改进的单缸柴油发动机上测试了马华油-生物柴油-柴油混合物(B20)和纯柴油。所获得的结果表明,与传统柴油发动机(孔径为0.28mm的3孔喷嘴)相比,除了NOx的情况外,改进的发动机(孔径直径为0.20mm的3孔喷嘴)的纯柴油和B20的性能、燃烧和排放特性都得到了改善。通过实施部分冷却的EGR,可以成功地补偿由较小孔口NHD引起的NOx排放的显著增加。总的来说,根据本研究的结果,建议在部分冷却EGR率为10%的情况下对发动机进行改造,作为20%的马华油生物柴油和柴油混合物的有效燃烧条件。然而,由于大量未燃烧的烟灰、CO2、H2O以及O2缺乏的再循环,EGR率的进一步增加,特别是在较高负载下,对改进的发动机的性能和排放特性产生不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.10
自引率
1.50%
发文量
15
审稿时长
8 weeks
期刊介绍: Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.
期刊最新文献
Editorial Board Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation A critical review of multiple alternative pathways for the production of a high-value bioproduct from sugarcane mill byproducts: the case of adipic acid Towards nationwide implementation of 40% biodiesel blend fuel in Indonesia: a comprehensive road test and laboratory evaluation Nanomaterials and their role in advancing biodiesel feedstock production: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1