Context-sensitive contrastive feature-based opinion summarisation of online reviews

Q3 Business, Management and Accounting International Journal of Enterprise Network Management Pub Date : 2020-03-06 DOI:10.1504/ijenm.2020.10027438
S. Lavanya, B. Parvathavarthini
{"title":"Context-sensitive contrastive feature-based opinion summarisation of online reviews","authors":"S. Lavanya, B. Parvathavarthini","doi":"10.1504/ijenm.2020.10027438","DOIUrl":null,"url":null,"abstract":"Contrastive opinion summarisation (COS) systems produce summary by selecting and aligning contrastive sentences from a set of positive and negative opinionated sentences. Most of the existing COS methods do not consider the implicit opinion present in a sentence while producing summary. Implicit opinion can be identified based on context terms present in a sentence. Therefore, a new COS approach called context-sensitive contrastive opinion summarisation is proposed. Initially linguistic rules are framed based on dependency relation to extract context-feature-opinion phrases. To automatically cluster the extracted context-feature-opinion phrases into contrastive arguments, a clustering algorithm is proposed. Context sensitive weight is calculated for each phrase based on their probability of occurrence in the concepts of ConceptNet. Clustering algorithm integrates context sensitivity with contrastive similarity for producing better arguments summary. Experimental conducted on car and product review datasets demonstrate that the context-sensitive clusters achieved good coverage and precision when compared to state-of-art approaches.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijenm.2020.10027438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

Abstract

Contrastive opinion summarisation (COS) systems produce summary by selecting and aligning contrastive sentences from a set of positive and negative opinionated sentences. Most of the existing COS methods do not consider the implicit opinion present in a sentence while producing summary. Implicit opinion can be identified based on context terms present in a sentence. Therefore, a new COS approach called context-sensitive contrastive opinion summarisation is proposed. Initially linguistic rules are framed based on dependency relation to extract context-feature-opinion phrases. To automatically cluster the extracted context-feature-opinion phrases into contrastive arguments, a clustering algorithm is proposed. Context sensitive weight is calculated for each phrase based on their probability of occurrence in the concepts of ConceptNet. Clustering algorithm integrates context sensitivity with contrastive similarity for producing better arguments summary. Experimental conducted on car and product review datasets demonstrate that the context-sensitive clusters achieved good coverage and precision when compared to state-of-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于上下文敏感对比特征的在线评论意见总结
对比意见总结(COS)系统通过从一组积极和消极的有主见的句子中选择和排列对比句子来产生总结。现有的大多数COS方法在生成摘要时都没有考虑句子中的隐含意见。隐含意见可以根据句子中的上下文术语来识别。因此,提出了一种新的COS方法,称为上下文敏感对比意见总结。最初,基于依赖关系建立语言规则来提取上下文特征的观点短语。为了将提取的上下文特征意见短语自动聚类为对比论据,提出了一种聚类算法。上下文敏感权重是根据每个短语在ConceptNet概念中的出现概率来计算的。聚类算法将上下文敏感性与对比相似性相结合,生成更好的论据摘要。在汽车和产品评论数据集上进行的实验表明,与现有技术相比,上下文敏感聚类实现了良好的覆盖率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
期刊最新文献
Multi-tier firm-level analysis of global auto supply chain: centrality and financial performance Development of coating material for low carbon steels using MCDM Multi-objective optimisation of wear process parameters of 413/fly ash composites using grey relational analysis Fashion market segmentation using Facebook: an empirical approach Development of coating material for low carbon steels using MCDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1