Effect of pH on Adsorption of Cu2+ by Using Composite of Polyvinyl alcohol (PVA)/Kaolin

Q4 Chemical Engineering ASEAN Journal of Chemical Engineering Pub Date : 2022-06-30 DOI:10.22146/ajche.71028
Nurhashimah Hassim, Khee Chung Hui, D. Floresyona, Norashikin Ahmad Kamal, N. S. Sambudi
{"title":"Effect of pH on Adsorption of Cu2+ by Using Composite of Polyvinyl alcohol (PVA)/Kaolin","authors":"Nurhashimah Hassim, Khee Chung Hui, D. Floresyona, Norashikin Ahmad Kamal, N. S. Sambudi","doi":"10.22146/ajche.71028","DOIUrl":null,"url":null,"abstract":"The existence of copper ions in the aquatic environment at a high level can cause negative repercussions for living organisms due to the toxic effect of bioaccumulation in the food chain. Hence, a profound effort is imperative to remove them from water effectively. Among feasible alternatives, a composite film made of PVA and kaolin is reviewed for copper removal via an adsorption mechanism. In this paper, the removal of copper ions from aqueous solution using PVA/Kaolin composite film has been studied with initial copper ions concentration within the range of 50 and 100 ppm and pH of the aqueous solution being controlled at 4, 7, and 9. The loading of 3 wt% kaolin in PVA shows the best adsorption performance in removing 99.14% of 50 ppm copper with an equilibrium adsorption capacity of 5.379 mg g-1 at pH 7. The composite can maintain the adsorption performance for the removal of 100 ppm copper solution at 96.26%.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.71028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of copper ions in the aquatic environment at a high level can cause negative repercussions for living organisms due to the toxic effect of bioaccumulation in the food chain. Hence, a profound effort is imperative to remove them from water effectively. Among feasible alternatives, a composite film made of PVA and kaolin is reviewed for copper removal via an adsorption mechanism. In this paper, the removal of copper ions from aqueous solution using PVA/Kaolin composite film has been studied with initial copper ions concentration within the range of 50 and 100 ppm and pH of the aqueous solution being controlled at 4, 7, and 9. The loading of 3 wt% kaolin in PVA shows the best adsorption performance in removing 99.14% of 50 ppm copper with an equilibrium adsorption capacity of 5.379 mg g-1 at pH 7. The composite can maintain the adsorption performance for the removal of 100 ppm copper solution at 96.26%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pH对聚乙烯醇/高岭土复合材料吸附Cu2+的影响
由于食物链中生物累积的毒性作用,高水平的铜离子在水生环境中的存在会对生物体造成负面影响。因此,必须作出重大努力,有效地将它们从水中清除。在可行的替代方案中,综述了由PVA和高岭土制成的复合膜通过吸附机制去除铜。在本文中,研究了使用PVA/高岭土复合膜从水溶液中去除铜离子,初始铜离子浓度在50和100ppm范围内,水溶液的pH控制在4、7和9。在PVA中负载3wt%高岭土显示出在去除99.14%的50ppm铜方面的最佳吸附性能,在pH 7下的平衡吸附容量为5.379mg g-1。该复合材料对100ppm铜溶液的去除率可保持在96.26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ASEAN Journal of Chemical Engineering
ASEAN Journal of Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
15
期刊最新文献
Optimization of Defective Coffee Beans Decaffeination Using Palm Oil The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane Chemical Properties and Breakthrough Adsorption Study of Activated Carbon Derived from Carbon Precursor from Carbide Industry Extraction of Java Lemongrass (Cymbopogon citratus) Using Microwave-Assisted Hydro Distillation in Pilot Scale: Parametric Study and Modelling Catalytic Decarboxylation of Palm Oil to Green Diesel over Pellets of Ni-CaO/Activated Carbon (AC) Catalyst Under Subcritical Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1