PInc-PanTher estimates of Arctic permafrost soil carbon under the GeoMIP G6solar and G6sulfur experiments

Aobo Liu, J. Moore, Yating Chen
{"title":"PInc-PanTher estimates of Arctic permafrost soil carbon under the GeoMIP G6solar and G6sulfur experiments","authors":"Aobo Liu, J. Moore, Yating Chen","doi":"10.5194/esd-14-39-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Circum-Arctic permafrost stores large amounts of frozen carbon that must be maintained to avoid catastrophic climate change. Solar geoengineering\nhas the potential to cool the Arctic surface by increasing planetary albedo but could also reduce tundra productivity. Here, we improve the\ndata-constrained PInc-PanTher model of permafrost carbon storage by including estimates of plant productivity and rhizosphere priming on soil\ncarbon. Six earth system models are used to drive the model, running G6solar (solar dimming) and G6sulfur (stratospheric sulfate aerosols)\nexperiments, which reduce radiative forcing from SSP5-8.5 (no mitigation) to SSP2-4.5 (substantive mitigation) levels. By 2100, simulations indicate\na loss of 9.2 ± 0.4 million km2 (mean ± standard error) of permafrost area and 81 ± 8 Pg of soil carbon under the\nSSP5-8.5 scenario. In comparison, under SSP2-4.5, G6solar, and G6sulfur, permafrost area loss would be mitigated by approximately 39 %, 37 %,\nand 34 % and soil carbon loss by 42 %, 54 %, and 47 %, respectively, relative to SSP5-8.5. Uncertainties in permafrost soil\nC loss estimates arise mainly from changes in vegetation productivity. Increased carbon flux from vegetation to soil raises soil\nC storage, while the priming effects of root exudates lowers it, with a net mitigating effect on soil C loss. Despite model\ndifferences, the protective effects of G6solar and G6sulfur on permafrost area and soil C storage are consistent and significant for all\nESMs. G6 experiments mitigate ∼ 1/3 of permafrost area loss and halve carbon loss for SSP5-8.5, averting USD 0–70 trillion (mean of USD 20 trillion) in\neconomic losses through reduced permafrost emissions.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-14-39-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. Circum-Arctic permafrost stores large amounts of frozen carbon that must be maintained to avoid catastrophic climate change. Solar geoengineering has the potential to cool the Arctic surface by increasing planetary albedo but could also reduce tundra productivity. Here, we improve the data-constrained PInc-PanTher model of permafrost carbon storage by including estimates of plant productivity and rhizosphere priming on soil carbon. Six earth system models are used to drive the model, running G6solar (solar dimming) and G6sulfur (stratospheric sulfate aerosols) experiments, which reduce radiative forcing from SSP5-8.5 (no mitigation) to SSP2-4.5 (substantive mitigation) levels. By 2100, simulations indicate a loss of 9.2 ± 0.4 million km2 (mean ± standard error) of permafrost area and 81 ± 8 Pg of soil carbon under the SSP5-8.5 scenario. In comparison, under SSP2-4.5, G6solar, and G6sulfur, permafrost area loss would be mitigated by approximately 39 %, 37 %, and 34 % and soil carbon loss by 42 %, 54 %, and 47 %, respectively, relative to SSP5-8.5. Uncertainties in permafrost soil C loss estimates arise mainly from changes in vegetation productivity. Increased carbon flux from vegetation to soil raises soil C storage, while the priming effects of root exudates lowers it, with a net mitigating effect on soil C loss. Despite model differences, the protective effects of G6solar and G6sulfur on permafrost area and soil C storage are consistent and significant for all ESMs. G6 experiments mitigate ∼ 1/3 of permafrost area loss and halve carbon loss for SSP5-8.5, averting USD 0–70 trillion (mean of USD 20 trillion) in economic losses through reduced permafrost emissions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PInc PanTher在GeoMIP G6solar和G6sulfur实验下对北极永久冻土土壤碳的估计
摘要环北极的永久冻土储存了大量的冷冻碳,必须加以保护,以避免灾难性的气候变化。太阳能地球工程有可能通过增加行星反照率来冷却北极表面,但也可能降低苔原的生产力。在这里,我们改进了数据受限的永久冻土碳储量的pin - panther模型,包括植物生产力和根际土壤碳的估计。6个地球系统模式用于驱动该模式,运行G6solar(太阳变暗)和g6硫磺(平流层硫酸盐气溶胶)实验,将辐射强迫从SSP5-8.5(无减缓)降低到SSP2-4.5(实质性减缓)水平。模拟表明,在sp5 -8.5情景下,到2100年,多年冻土区将损失9.2±40万平方公里(平均±标准误差),土壤碳将损失81±8 Pg。相比之下,与SSP5-8.5相比,SSP2-4.5、g6太阳能和g6硫处理下,多年冻土区损失将分别减少约39%、37%和34%,土壤碳损失将分别减少42%、54%和47%。冻土土壤c损失估算的不确定性主要来自植被生产力的变化。从植被到土壤的碳通量增加增加了土壤碳储量,而根系分泌物的启动效应降低了土壤碳储量,对土壤碳损失有净缓解作用。尽管模式存在差异,但g6太阳能和g6硫对冻土带面积和土壤C储量的保护作用是一致的,且显著的。G6试验减少了SSP5-8.5年1/3的永久冻土区损失,减少了一半的碳损失,通过减少永久冻土区排放避免了0-70万亿美元(平均20万亿美元)的经济损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing the estimation of future climate impacts within the United States. Carbon fluxes in spring wheat agroecosystem in India A 20-year satellite-reanalysis-based climatology of extreme precipitation characteristics over the Sinai Peninsula Impacts of anthropogenic water regulation on global riverine dissolved organic carbon transport Working at the limit: a review of thermodynamics and optimality of the Earth system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1