Cell Selection Mechanism Based on Q-learning Environment in Femtocell LTE-A Networks

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of ICT Research and Applications Pub Date : 2021-07-05 DOI:10.5614/ITBJ.ICT.RES.APPL.2021.15.1.4
Ammar A. Bathich, S. I. Suliman, Hj. Mohd Asri Hj. Mansor, Sinan Ghassan Abid Ali, Raed M. T. Abdulla
{"title":"Cell Selection Mechanism Based on Q-learning Environment in Femtocell LTE-A Networks","authors":"Ammar A. Bathich, S. I. Suliman, Hj. Mohd Asri Hj. Mansor, Sinan Ghassan Abid Ali, Raed M. T. Abdulla","doi":"10.5614/ITBJ.ICT.RES.APPL.2021.15.1.4","DOIUrl":null,"url":null,"abstract":"Universal mobile networks require enhanced capability and appropriate quality of service (QoS) and experience (QoE). To achieve this, Long Term Evolution (LTE) system operators have intensively deployed femtocells (HeNBs) along with macrocells (eNBs) to offer user equipment (UE) with optimal capacity coverage and best quality of service. To achieve the requirement of QoS in the handover stage among macrocells and femtocells we need a seamless cell selection mechanism. Cell selection requirements are considered a difficult task in femtocell-based networks and effective cell selection procedures are essential to reduce the ping-pong phenomenon and to minimize needless handovers. In this study, we propose a seamless cell selection scheme for macrocell-femtocell LTE systems, based on the Q-learning environment. A novel cell selection mechanism is proposed for high-density femtocell network topologies to evaluate the target base station in the handover stage. We used the LTE-Sim simulator to implement and evaluate the cell selection procedures. The simulation results were encouraging: a decrease in the control signaling rate and packet loss ratio were observed and at the same time the system throughput was increased.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2021.15.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

Universal mobile networks require enhanced capability and appropriate quality of service (QoS) and experience (QoE). To achieve this, Long Term Evolution (LTE) system operators have intensively deployed femtocells (HeNBs) along with macrocells (eNBs) to offer user equipment (UE) with optimal capacity coverage and best quality of service. To achieve the requirement of QoS in the handover stage among macrocells and femtocells we need a seamless cell selection mechanism. Cell selection requirements are considered a difficult task in femtocell-based networks and effective cell selection procedures are essential to reduce the ping-pong phenomenon and to minimize needless handovers. In this study, we propose a seamless cell selection scheme for macrocell-femtocell LTE systems, based on the Q-learning environment. A novel cell selection mechanism is proposed for high-density femtocell network topologies to evaluate the target base station in the handover stage. We used the LTE-Sim simulator to implement and evaluate the cell selection procedures. The simulation results were encouraging: a decrease in the control signaling rate and packet loss ratio were observed and at the same time the system throughput was increased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毫微微小区LTE-A网络中基于Q学习环境的小区选择机制
通用移动网络需要增强的能力以及适当的服务质量(QoS)和体验(QoE)。为了实现这一点,长期演进(LTE)系统运营商已经密集地部署了毫微微小区(HeNB)以及宏小区(eNB),以向用户设备(UE)提供最佳容量覆盖和最佳服务质量。为了在宏小区和毫微微小区之间的切换阶段实现QoS的要求,我们需要一种无缝的小区选择机制。在基于毫微微小区的网络中,小区选择要求被认为是一项艰巨的任务,有效的小区选择过程对于减少乒乓现象和最小化不必要的切换至关重要。在本研究中,我们提出了一种基于Q学习环境的宏小区-毫微微小区LTE系统的无缝小区选择方案。针对高密度毫微微小区网络拓扑结构,提出了一种新的小区选择机制,用于在切换阶段评估目标基站。我们使用LTE Sim模拟器来实现和评估小区选择过程。仿真结果令人鼓舞:观察到控制信令速率和丢包率下降,同时系统吞吐量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ICT Research and Applications
Journal of ICT Research and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.60
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊介绍: Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Smart Card-based Access Control System using Isolated Many-to-Many Authentication Scheme for Electric Vehicle Charging Stations The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs Machine Learning-based Early Detection and Prognosis of the Covid-19 Pandemic Improving Robustness Using MixUp and CutMix Augmentation for Corn Leaf Diseases Classification based on ConvMixer Architecture Generative Adversarial Networks Based Scene Generation on Indian Driving Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1