Ammar A. Bathich, S. I. Suliman, Hj. Mohd Asri Hj. Mansor, Sinan Ghassan Abid Ali, Raed M. T. Abdulla
{"title":"Cell Selection Mechanism Based on Q-learning Environment in Femtocell LTE-A Networks","authors":"Ammar A. Bathich, S. I. Suliman, Hj. Mohd Asri Hj. Mansor, Sinan Ghassan Abid Ali, Raed M. T. Abdulla","doi":"10.5614/ITBJ.ICT.RES.APPL.2021.15.1.4","DOIUrl":null,"url":null,"abstract":"Universal mobile networks require enhanced capability and appropriate quality of service (QoS) and experience (QoE). To achieve this, Long Term Evolution (LTE) system operators have intensively deployed femtocells (HeNBs) along with macrocells (eNBs) to offer user equipment (UE) with optimal capacity coverage and best quality of service. To achieve the requirement of QoS in the handover stage among macrocells and femtocells we need a seamless cell selection mechanism. Cell selection requirements are considered a difficult task in femtocell-based networks and effective cell selection procedures are essential to reduce the ping-pong phenomenon and to minimize needless handovers. In this study, we propose a seamless cell selection scheme for macrocell-femtocell LTE systems, based on the Q-learning environment. A novel cell selection mechanism is proposed for high-density femtocell network topologies to evaluate the target base station in the handover stage. We used the LTE-Sim simulator to implement and evaluate the cell selection procedures. The simulation results were encouraging: a decrease in the control signaling rate and packet loss ratio were observed and at the same time the system throughput was increased.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2021.15.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
Universal mobile networks require enhanced capability and appropriate quality of service (QoS) and experience (QoE). To achieve this, Long Term Evolution (LTE) system operators have intensively deployed femtocells (HeNBs) along with macrocells (eNBs) to offer user equipment (UE) with optimal capacity coverage and best quality of service. To achieve the requirement of QoS in the handover stage among macrocells and femtocells we need a seamless cell selection mechanism. Cell selection requirements are considered a difficult task in femtocell-based networks and effective cell selection procedures are essential to reduce the ping-pong phenomenon and to minimize needless handovers. In this study, we propose a seamless cell selection scheme for macrocell-femtocell LTE systems, based on the Q-learning environment. A novel cell selection mechanism is proposed for high-density femtocell network topologies to evaluate the target base station in the handover stage. We used the LTE-Sim simulator to implement and evaluate the cell selection procedures. The simulation results were encouraging: a decrease in the control signaling rate and packet loss ratio were observed and at the same time the system throughput was increased.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.