L. Tay, S. E. Woo, L. Hickman, Brandon M. Booth, Sidney K. D’Mello
{"title":"A Conceptual Framework for Investigating and Mitigating Machine-Learning Measurement Bias (MLMB) in Psychological Assessment","authors":"L. Tay, S. E. Woo, L. Hickman, Brandon M. Booth, Sidney K. D’Mello","doi":"10.1177/25152459211061337","DOIUrl":null,"url":null,"abstract":"Given significant concerns about fairness and bias in the use of artificial intelligence (AI) and machine learning (ML) for psychological assessment, we provide a conceptual framework for investigating and mitigating machine-learning measurement bias (MLMB) from a psychometric perspective. MLMB is defined as differential functioning of the trained ML model between subgroups. MLMB manifests empirically when a trained ML model produces different predicted score levels for different subgroups (e.g., race, gender) despite them having the same ground-truth levels for the underlying construct of interest (e.g., personality) and/or when the model yields differential predictive accuracies across the subgroups. Because the development of ML models involves both data and algorithms, both biased data and algorithm-training bias are potential sources of MLMB. Data bias can occur in the form of nonequivalence between subgroups in the ground truth, platform-based construct, behavioral expression, and/or feature computing. Algorithm-training bias can occur when algorithms are developed with nonequivalence in the relation between extracted features and ground truth (i.e., algorithm features are differentially used, weighted, or transformed between subgroups). We explain how these potential sources of bias may manifest during ML model development and share initial ideas for mitigating them, including recognizing that new statistical and algorithmic procedures need to be developed. We also discuss how this framework clarifies MLMB but does not reduce the complexity of the issue.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/25152459211061337","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 18
Abstract
Given significant concerns about fairness and bias in the use of artificial intelligence (AI) and machine learning (ML) for psychological assessment, we provide a conceptual framework for investigating and mitigating machine-learning measurement bias (MLMB) from a psychometric perspective. MLMB is defined as differential functioning of the trained ML model between subgroups. MLMB manifests empirically when a trained ML model produces different predicted score levels for different subgroups (e.g., race, gender) despite them having the same ground-truth levels for the underlying construct of interest (e.g., personality) and/or when the model yields differential predictive accuracies across the subgroups. Because the development of ML models involves both data and algorithms, both biased data and algorithm-training bias are potential sources of MLMB. Data bias can occur in the form of nonequivalence between subgroups in the ground truth, platform-based construct, behavioral expression, and/or feature computing. Algorithm-training bias can occur when algorithms are developed with nonequivalence in the relation between extracted features and ground truth (i.e., algorithm features are differentially used, weighted, or transformed between subgroups). We explain how these potential sources of bias may manifest during ML model development and share initial ideas for mitigating them, including recognizing that new statistical and algorithmic procedures need to be developed. We also discuss how this framework clarifies MLMB but does not reduce the complexity of the issue.
期刊介绍:
In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions.
The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science.
The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies.
Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.