{"title":"A multispecies turbulence model for the mixing and de-mixing of miscible fluids","authors":"N. Braun, R. Gore","doi":"10.1080/14685248.2021.1983180","DOIUrl":null,"url":null,"abstract":"A de-mix capable model for turbulence in compressible, variable density flows is proposed. The model is based on the Besnard-Harlow-Rauenzahn (BHR) family of models (Besnard D, Harlow F, Rauenzahn R, et al. Turbulence transport equations for variable-density turbulence and their relationship to two-field models. NM (United States): Los Alamos National Laboratory; 1992 (Technical Report LA-12303-MS), but is extended to track the evolution of the turbulent fluxes and fluctuations in the material mass fractions for each species present. The new evolution equations are introduced without requiring additional closures or new empirically tuned coefficients relative to previous BHR models, and are shown to improve the model’s ability to reproduce the behaviour of simulations containing mixing layers that are constrained by a stabilising force. The model is tested in a range of canonical flows including Rayleigh-Taylor driven, shock driven, and shear driven turbulence, and is shown to produce reasonable agreement with simulations and experiments in these scenarios.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"22 1","pages":"784 - 813"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.1983180","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 5
Abstract
A de-mix capable model for turbulence in compressible, variable density flows is proposed. The model is based on the Besnard-Harlow-Rauenzahn (BHR) family of models (Besnard D, Harlow F, Rauenzahn R, et al. Turbulence transport equations for variable-density turbulence and their relationship to two-field models. NM (United States): Los Alamos National Laboratory; 1992 (Technical Report LA-12303-MS), but is extended to track the evolution of the turbulent fluxes and fluctuations in the material mass fractions for each species present. The new evolution equations are introduced without requiring additional closures or new empirically tuned coefficients relative to previous BHR models, and are shown to improve the model’s ability to reproduce the behaviour of simulations containing mixing layers that are constrained by a stabilising force. The model is tested in a range of canonical flows including Rayleigh-Taylor driven, shock driven, and shear driven turbulence, and is shown to produce reasonable agreement with simulations and experiments in these scenarios.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.